题目背景
NOIP2012 提高组 DAY2 试题。
题目描述
在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。面对海量租借教室的信息,我们自然希望编程解决这个问题。
我们需要处理接下来 n 天的借教室信息,其中第 i 天学校有 ri 个教室可供租借。共有 m 份订单,每份订单用三个正整数描述,分别为 dj, sj, tj,表示某租借者需要从第 sj 天到第 tj 天租借教室(包括第 sj 天和第 tj 天),每天需要租借 dj 个教室。
我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提供 dj 个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申请人修改订单。这里的无法满足指从第 sj 天到第 tj 天中有至少一天剩余的教室数量不足 dj个。
现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改订单。
输入格式
第一行包含两个正整数 n, m,表示天数和订单的数量。
第二行包含 n 个正整数,其中第 i 个数为 ri,表示第i天可用于租借的教室数量。
接下来有 m 行,每行包含三个正整数 dj, sj, tj,表示租借的数量,租借开始、结束分别在第几天。
每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。
输出格式
如果所有订单均可满足,则输出只有一行,包含一个整数 0。
否则(订单无法完全满足)输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。
样例数据 1
输入
4 3
2 5 4 3
2 1 3
3 2 4
4 2 4
输出
-1
2
备注
【样例说明】
第 1 份订单满足后,4 天剩余的教室数分别为 0,3,2,3。第 2 份订单要求第 2 天到第 4 天每天提供 3 个教室,而第 3 天剩余的教室数为 2,因此无法满足。分配停止,通知第 2 个申请人修改订单。
【数据范围】
对于 10% 的数据,有1≤n,m≤10;
对于 30% 的数据,有1≤n,m≤1000;
对于 70% 的数据,有1≤n,m≤105;
对于 100% 的数据,有1≤n,m≤106,0≤ri,dj≤109,1≤sj≤tj≤n。
解析:
看到题就无脑打了一个线段树,交上去测下来在洛谷上95分LOJ上100分,又拿到比较接近CCF老爷机的机子上测了100分。
线段树的做法就是维护区间减区间最小值就行了。
正解的话就是用二分+差分。
代码(线段树):
#include <bits/stdc++.h>
using namespace std;
const int Max=1000010;
int n,m;
int num[Max];
int tree[Max<<2],sub[Max<<2];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') f=-1,c=getchar();
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline int mn(int x,int y){return x < y ? x : y;}
inline void update(int root){tree[root]=min(tree[root<<1],tree[root<<1|1]);}
inline void pushdown(int root)
{
tree[root<<1]+=sub[root],tree[root<<1|1]+=sub[root];
sub[root<<1]+=sub[root],sub[root<<1|1]+=sub[root];
sub[root]=0;
}
inline void build(int root,int l,int r)
{
if(l==r) {tree[root]=num[l];return;}
int mid=(l+r)>>1;
build(root<<1,l,mid),build(root<<1|1,mid+1,r);
update(root);
}
inline void add(int root,int l,int r,int L,int R,int x)
{
if(L<=l&&R>=r) {tree[root]+=x,sub[root]+=x;return;}
int mid=(l+r>>1);
pushdown(root);
if(L<=mid) add(root<<1,l,mid,L,R,x);
if(R>mid) add(root<<1|1,mid+1,r,L,R,x);
update(root);
}
inline int Q(int root,int l,int r,int L,int R)
{
if(L<=l&&R>=r) return tree[root];
int mid=(l+r)>>1,ans=1e9+7;
pushdown(root);
if(L<=mid) ans=min(ans,Q(root<<1,l,mid,L,R));
if(R>mid) ans=min(ans,Q(root<<1|1,mid+1,r,L,R));
return ans;
}
int main()
{
n=get_int(),m=get_int();
for(int i=1;i<=n;i++) num[i]=get_int();
build(1,1,n);
for(int i=1;i<=m;i++)
{
int x=get_int(),l=get_int(),r=get_int();
if(Q(1,1,n,l,r)>=x) add(1,1,n,l,r,-x);
else {cout<<"-1\n"<<i<<"\n";return 0;}
}
cout<<"0\n";
return 0;
}
代码(二分+差分):
#include <bits/stdc++.h>
using namespace std;
const int Max=1000010;
int n,m,ans;
int num[Max],sum[Max],l[Max],r[Max],add[Max];
inline int get_int()
{
int x=0,f=1;
char c;
for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
if(c=='-') f=-1,c=getchar();
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
return x*f;
}
inline bool check(int mid)
{
memset(sum,0,sizeof(sum));
for(int i=1;i<=mid;++i) sum[l[i]]+=add[i],sum[r[i]+1]-=add[i];
for(int i=1;i<=n;++i)
{
sum[i]+=sum[i-1];
if(sum[i]>num[i]) return 0;
}
return 1;
}
int main()
{
n=get_int(),m=get_int();
for(int i=1;i<=n;++i) num[i]=get_int();
for(int i=1;i<=m;++i) add[i]=get_int(),l[i]=get_int(),r[i]=get_int();
int l=0,r=n+1,mid;
while(l<r)
{
mid=(l+r)>>1;
if(!check(mid)) ans=mid,r=mid;
else l=mid+1;
}
if(!l||l>n) cout<<"0";
else cout<<"-1\n"<<ans<<"\n";
return 0;
}