2002: [Hnoi2010]Bounce 弹飞绵羊
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 14952 Solved: 7605
Description
某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。
Input
第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000
Output
对于每个i=1的情况,你都要输出一个需要的步数,占一行。
Sample Input
4
1 2 1 1
3
1 1
2 1 1
1 1
Sample Output
2
3
解析:
LCT,分块均可。
由于本蒟蒻不会LCT,就讲讲分块怎么做吧TT。
首先分块,令表示从出发到下一块的步数,表示到下一块的位置,可倒叙递推得到,对于每次修改,被改变的只有所在块之前的位置的信息,所以最终复杂度仍是级别的。
PS:事实证明块的大小很重要。
代码:
#include <bits/stdc++.h>
using namespace std;
const int Max=200010;
int n,m,size,cnt;
int k[Max],l[Max],r[Max],fa[Max],f[Max],pos[Max];
inline int get_int()
{
int x=0;
char c;
for(c=getchar();(!isdigit(c));c=getchar());
for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^48);
return x;
}
inline void print(int x)
{
if(x>9) print(x/10);
putchar((x-x/10*10)^48);
}
inline void init()
{
n=get_int(),size=800;
for(int i=1;i<=n;++i) k[i]=get_int();
}
inline void pre()
{
cnt=n/size;
if(n!=n/size*size) cnt++;
for(int i=1;i<=n;++i) fa[i]=(i-1)/size+1;
for(int i=1;i<=cnt;++i) l[i]=(i-1)*size+1,r[i]=i*size;
r[cnt]=n;
}
inline int calc(int p)
{
int ans=0;
while(1)
{
ans+=f[p];
if(!pos[p]) break;
p=pos[p];
}
return ans;
}
inline void solve()
{
for(int i=n;i;--i)
{
if(i+k[i]>n) f[i]=1;
else if(fa[i]==fa[i+k[i]]) f[i]=f[i+k[i]]+1,pos[i]=pos[i+k[i]];
else f[i]=1,pos[i]=i+k[i];
}
m=get_int();
while(m--)
{
int tag=get_int(),x=get_int()+1;
if(tag==1) print(calc(x)),puts("");
else
{
k[x]=get_int();
for(int i=x;i>=l[fa[x]];--i)
{
if(i+k[i]>n) f[i]=1,pos[i]=0;
else if(fa[i]==fa[i+k[i]]) f[i]=f[i+k[i]]+1,pos[i]=pos[i+k[i]];
else f[i]=1,pos[i]=i+k[i];
}
}
}
}
int main()
{
init();
pre();
solve();
return 0;
}