李宏毅机器笔记-2-回归

回归定义和应用举例

回归定义

Regression 就是找到一个函数 function,通过输入特征 x,输出一个数值 Scalar。

应用举例

  • 股市预测(Stock market forecast)
    输入:过去10年股票的变动、新闻咨询、公司并购咨询等
    输出:预测股市明天的平均值
  • 自动驾驶(Self-driving Car)
    输入:无人车上的各个sensor的数据,例如路况、测出的车距等
    输出:方向盘的角度
  • 商品推荐(Recommendation)
    输入:商品A的特性,商品B的特性
    输出:购买商品B的可能性
  • Pokemon精灵攻击力预测(Combat Power of a pokemon):
    输入:进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)
    输出:进化后的CP值

模型步骤

  • step1:模型假设,选择模型框架(线性模型)
  • step2:模型评估,如何判断众多模型的好坏(损失函数)
  • step3:模型优化,如何筛选最优的模型(梯度下降)

step1:模型假设-线性模型

一元线性模型(单个特征)

以一个特征 x c p x_{cp} xcp为例,线性模型假设 y = b + w ⋅ x c p y = b + w·x_{cp} y=b+wxcp ,所以 w w w b b b 可以猜测很多模型:
f 1 : y = 10.0 + 9.0 ⋅ x c p f_{1} :y=10.0+9.0⋅x_{cp} f1:y=10.0+9.0xcp
f 2 : y = 9.8 + 9.2 ⋅ x c p f_{2} :y=9.8+9.2⋅x_{cp} f2:y=9.8+9.2xcp
f 2 : y = − 8.0 − 1.2 ⋅ x c p f_{2} :y=-8.0-1.2⋅x_{cp} f2:y=8.01.2xcp
. . . ... ...
虽然可以做出很多假设,但在这个例子中,显然 f 3 : y = − 0.8 − 1.2 ⋅ x c p f_3: y = - 0.8 - 1.2·x_{cp} f3:y=0.81.2xcp的假设是不合理的,不能进化后CP值是个负值>

多元线性模型(多个特征)

在实际应用中,输入特征肯定不止$ x_{cp} $这一个。例如,进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)等,特征会有很多。
在这里插入图片描述
所以我们假设 线性模型 Linear model: y = b + ∑ w i x i y = b + \sum w_ix_i y=b+wixi

  • x i x_i xi:就是各种特征(fetrure) x c p , x h p , x w , x h , ⋅ ⋅ ⋅ x_{cp},x_{hp},x_w,x_h,··· xcp,xhp,xw,xh,
  • w i w_i wi:各个特征的权重 w c p , w h p , w w , w h , ⋅ ⋅ ⋅ w_{cp},w_{hp},w_w,w_h,··· wcp,whp,ww,wh,
  • b b b:偏移量
    注意:接下来的内容需要看清楚是【单个特征】还是【多个特征】的示例

step2:模型评估-损失函数

​【单个特征】: x c p x_{cp} xcp

收集和查看数据

这里定义 x 1 x^1 x1是进化前的CP值, y ^ 1 \hat{y}^1 y^1是进化后的CP值,^所代表的是真实值。
在这里插入图片描述
将10组原始数据在二维图中展示,图中的每一个点 ( x c p n , y ^ n x_{cp}^n,\hat{y}^n xcpny^n) 对应着 进化前的CP值和进化后的CP值。
在这里插入图片描述

如何判断众多模型的好坏

有了这些真实的数据,那我们怎么衡量模型的好坏呢?从数学的角度来讲,我们使用距离。求【进化后的CP值】与【模型预测的CP值】差,来判定模型的好坏。也就是使用损失函数(Loss function) 来衡量模型(一组w,b)的好坏,统计10组原始数据 ( y ^ n − f ( x c p n ) ) 2 \left (\hat{y}^n - f(x_{cp}^n) \right )^2 (y^nf(xcpn))2的和,和越小模型越好。如下图所示:
在这里插入图片描述
如果觉得看着这个图会晕,忽略图4,直接看公式推导的过程:
在这里插入图片描述
最终定义损失函数 Loss function: L ( w , b ) = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p n ) ) 2 L(w,b)=\sum_{n=1}^{10}(\hat{y}^n−(b+w⋅x_{cp}^n))^2 L(w,b)=n=110(y^n(b+wxcpn))2
我们将 w w w b b b在二维坐标图中展示,如图所示:
在这里插入图片描述

  • 图中每一个点代表着一个模型对应的 w w w b b b
  • 颜色越偏红色代表Loss越大
    可以与后面的图11(等高线)进行对比

step 3:梯度下降

【单个特征】: x c p x_{cp} xcp

如何筛选最优模型(参数w,b)

已知损失函数 L ( w , b ) = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p n ) ) 2 L(w,b)=\sum_{n=1}^{10}(\hat{y}^n−(b+w⋅x_{cp}^n))^2 L(w,b)=n=110(y^n(b+wxcpn))2,需要找到一个令结果最小的 f ∗ f^* f,在实际的场景中,我们遇到的参数肯定不止 w w w b b b
在这里插入图片描述
先从最简单的只有一个参数 w w w入手,定义 w ∗ = a r g min ⁡ x L ( w ) w^*=arg \min \limits_xL(w) w=argxminL(w)
在这里插入图片描述
首先在这里引入一个概念学习率 :移动的步长,如图7中 η \eta η

  • 步骤1:随机选取一个 w 0 w^0 w0
  • 步骤2:计算微分,也就是当前的斜率,根据斜率来判定移动的方向
    大于0向右移动(增加 w w w
    小于0向左移动(减少 w w w
  • 步骤3:根据学习率移动
    重复步骤2和步骤3,直到找到最低点
    在这里插入图片描述
    步骤1中,我们随机选取一个 w 0 w^0 w0,如图8所示,我们有可能会找到当前的最小值,并不是全局的最小值,这里我们保留这个疑问,后面解决。
    解释完单个模型参数 w w w,引入2个模型参数 w w w b b b, 其实过程是类似的,需要做的是偏微分,过程如图9所示,偏微分的求解结果文章后面会有解释,详细的求解过程自行Google。
    在这里插入图片描述
    整理成一个更简洁的公式:
    在这里插入图片描述

梯度下降推演最优模型的过程

如果把 w w w b b b在图形中展示:
在这里插入图片描述

  • 每一条线围成的圈就是等高线,代表损失函数的值,颜色约深的区域代表的损失函数越小
  • 红色的箭头代表等高线的法线方向

梯度下降算法在现实世界中面临的挑战

我们通过梯度下降(gradient descent)不断更新损失函数的结果,这个结果会越来越小,那这种方法找到的结果是否都是正确的呢?前面提到的当前最优问题外,还有没有其他存在的问题呢?
线性回归模型的Loss function是凸函数,不存在局部最优而非全局最优。
在这里插入图片描述其实还会有其他的问题:

  • 问题1:当前最优(Stuck at local minima)
  • 问题2:等于0(Stuck at saddle point)
  • 问题3:趋近于0(Very slow at the plateau)
    在这里插入图片描述
    在线性模型里都是碗状(山谷形状),梯度下降基本上都能找到最优点,但是在其他更复杂的模型里,可能会到问题2和3。

w和b偏微分的计算方法

在这里插入图片描述

如何验证训练好的模型的好坏

使用训练集和测试集的平均误差来验证模型的好坏 我们使用将10组原始数据,训练集求得平均误差为31.9,如图所示:
在这里插入图片描述
然后再使用10组Pokemons测试模型,测试集求得平均误差为35.0 如图所示:

在这里插入图片描述

更强大复杂的模型:1元N次线性模型

在模型上,我们还可以进一部优化,选择更复杂的模型,使用1元2次方程举例,如图17,发现训练集求得平均误差为15.4,测试集的平均误差为18.4:
在这里插入图片描述
这里我们提出一个新的问题:是不是能画出直线就是线性模型,各种复杂的曲线就是非线性模型? 其实还是线性模型,因为把 x c p 1 = ( x c p ) 2 x_{cp}^1= (x_{cp})^2 xcp1=(xcp)2看作一个特征,那么 y = b + w 1 ⋅ x c p + w 2 ⋅ x c p 1 y=b+w_1⋅x_{cp}+w_2⋅x^1_{cp} y=b+w1xcp+w2xcp1其实就是线性模型。

过拟合问题出现

在模型上,我们再可以进一部优化,使用更高次方的模型,如图所示

  • 训练集平均误差【15.4】【15.3】【14.9】【12.8】
  • 测试集平均误差【18.4】【18.1】【28.8】【232.1】
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在训练集上面表现更为优秀的模型,为什么在测试集上效果反而变差了?这就是模型在训练集上过拟合的问题。
    如图所示,每一个模型结果都是一个集合,5次模型包 ⊇ \supseteq 4次模型 ⊇ \supseteq 3次模型,所以在4次模型里面找到的最佳模型,肯定不会比5次模型里面找到更差。
    在这里插入图片描述
    将错误率结果图形化展示,发现3次方以上的模型,已经出现了过拟合的现象:
    在这里插入图片描述

步骤优化

输入更多Pokemons数据,相同的起始CP值,但进化后的CP差距竟然是2倍。如图21,其实将Pokemons种类通过颜色区分,就会发现Pokemons种类是隐藏的比较深得特征,不同Pokemons种类影响了进化后的CP值的结果。
在这里插入图片描述

Step1优化:2个input的四个线性模型是合并到一个线性模型中

通过对 Pokemons种类 判断,将 4个线性模型 合并到一个线性模型中
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Step2优化:如果希望模型更强大表现更好(更多参数,更多input)

在最开始我们有很多特征,图形化分析特征,将血量(HP)、重量(Weight)、高度(Height)也加入到模型中
在这里插入图片描述
在这里插入图片描述
更多特征,更多input,数据量没有明显增加,仍旧导致overfitting。

Step3优化:加入正则化

更多特征,但是权重 w w w可能会使某些特征权值过高,仍旧导致overfitting,所以加入正则化
在这里插入图片描述
在这里插入图片描述

  • w w w越小,表示 functionfunction 较平滑的, functionfunction输出值与输入值相差不大
  • 在很多应用场景中,并不是 w w w越小模型越平滑越好,但是经验值告诉我们 w w w越小大部分情况下都是好的。
  • b b b的值接近于0 ,对曲线平滑是没有影响

总结

  • Pokemon: Original CP and species almost decide the CP after evolution(Pokemon:原始CP和物种几乎决定了进化后的CP)
    · There are probably other hidden factors(可能还有其他隐藏的因素,高度、体重等)
  • Gradient descent(梯度下降)
    · Following lectures: theory and tips(更多的理论和技巧将在下面的讲座中)
  • Overfitting and Regularization(过度拟合与正则化)
    · Following lectures: more theory behind these(更多的理论支持在接下来的讲座中)
  • We finally get average error = 11.1 on the testing data(最终得到测试数据的平均误差= 11.1)
    · How about another set of new data? Underestimate?Overestimate?(再来一组新的数据怎么样?低估还是高估?)
    · Following lectures: validation(下列讲座:验证)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹿港小小镇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值