李宏毅机器学习-3-误差和梯度下降

1. 误差

Error的来源

 根据上节课测试集数据得到,Average\ ErrorAverage Error 随模型复杂增加呈指数上升趋势。更复杂的模型并不能给测试集带来更好的效果,而Error的主要有两个来源,分别是bias和variance。

 Bias、Variance和Erroe的关系可参考 机器学习中的Bias(偏差),Error(误差),和Variance(方差)有什么区别和联系?

估测

假设真实的模型(理论最佳)为\hat{f}, 如果我们知道\hat{f}模型,那是最好不过了,但\hat{f}只有 Niamtic 公司(宝可梦开发公司)才知。

 所以我们只能通过收集Pokemon精灵数据,然后通过 step1~step3 训练得到我们的理想模型c,f^{*}其实是 \hat{f}的一个预估值。

 这个过程就像打靶,\hat{f}是靶心,f^{*}就是我们投掷的结果。如上图所示,\hat{f}f^{*}之间蓝色部分的差距就是偏差(bias)和方差(variance)导致的。

 估测变量x的偏差和方差

 首先理解偏差和方差怎样计算: 偏差(Bias)和方差(Variance)——机器学习中的模型选择

评估x的偏差

  •  假设x的平均值是\mu,方差是\sigma ^2,如何评估平均值呢?
  • 首先,拿到N个样本点,\left \{ x^1,x^2,\cdots ,x^N \right \}
  • 计算平均值m,得到m=\frac{1}{N}\sum_{n}x^{n}\neq \mu

 

 计算多组mm期望:

 这便是无偏估计。

m分布对于\mu的离散程度(方差):

N越小越离散(越不准):

 

估测变量x的方差

 为什么有很多模型

假设在平行宇宙中,抓到不同的神奇宝贝:

同一个model,在不同的训练数据集中找到的f^{*}不一样:

 就像在靶心上射击,进行了很多组(一组多次)。现在需要知道它的散布是怎样的,将100个宇宙中的model(100个不同的w和b)画出来如图:

考虑不同模型的方差

一次模型的方差较小,也就是比较集中,离散程度较小。而5次模型的方差就比较大,同理散布比较广,离散程度较大。

通常简单的模型,方差较小(就像每次射击结果都集中在一个比较小的区域内)。复杂模型,方差较大大,散布比较开。

这是因为简单的模型受到不同训练集的影响较小

由于无法知道真正的 \hat{f},假设图中黑色曲线为真正的\hat{f}

结果显示,1次平均的\bar{f}没有5次的好,5次模型离散程度很高。

1次模型的偏差比较大,复杂的5次模型,偏差较小。

直观解释:简单模型函数集的space较小,所以可能space中没有包含靶心,肯定射不中。而复杂的模型函数集的space较大,可能包含靶心,只是没有办法找到确切的靶心在哪,但足够多的,就可能得到真正的\bar{f}

 偏差(bias)与方差(variance)

 

将误差拆分为偏差和方差。简单模型(左边)是偏差较大造成的误差,叫做欠拟合,复杂模型(右边)是方差过大造成的误差,叫做过拟合。

如何判断误差来源

如果模型没有很好的训练集,就是偏差过大,欠拟合;如果模型很好的训练集,即在训练集上得到很小的错误,但在测试集上得到大的错误,这意味着模型可能是方差比较大,就是过拟合。 对于欠拟合和过拟合,分别对应不同的处理方法。

偏差(bias)大-欠拟合

考虑重新设计模型。因为之前的函数集里面可能根本没有包含f^{*}。可以:

  • 将更多的函数加进去,比如考虑高度重量,或者HP值等等。
  • 考虑更多次幂、更复杂的模型。
  • 如果此时强行再收集更多的data去训练,没有什么帮助,因为设计的函数集本身不够好,再找更多的训练集作用不大。

方差(variance)大-过拟合

  • 寻找更多数据
  • Regularization

但是很多时候不一定能做到收集更多的data。可以针对对问题的理解对数据集做调整。比如识别手写数字的时候,偏转角度的数据集不够,那就将正常的数据集左转15度,右转15度,类似这样的处理。

模型选择

现在在偏差和方差之间需要一个权衡,想选择的模型,可以平衡偏差和方差产生的错误,使总错误最小,但是下面这件事最好不要做:

手上有Training set 和Testing set,想要知道model1、model2、model3中选哪一个,分别用model1、model2、model3找一个best function,然后派到testing set上,分别得到error1、error2、error3,比较它们,选取error值最小的。

  • 用训练集训练不同的模型,然后在测试集上比较error

模型3的错误比较小,就认为模型3好。但实际上这只是你手上的测试集,真正完整的测试集并没有。比如在已有的测试集上错误是0.5,但有条件收集到更多的测试集后通常得到的错误都是大于0.5的。 (不是很懂)

交叉验证

图中public的测试集是已有的,private是没有的。交叉验证就是将训练集再分为两部分,一部分作为训练集,一部分作为验证集。用训练集训练模型,然后在验证集上比较,确定出最好的模型之后(比如模型3),再用全部的训练集训练模型3,然后再用public的测试集进行测试,此时一般得到的错误都比较大。此时会想再回去调参数,调整模型,让在public的测试集上更好,但不推荐这样。

若担心将训练集拆分的时候分的效果比较差,可以用下面的方法。

N折交叉验证

将训练集分成N份(比如分成3份)。

 

 比如在三份中训练结果Average错误是模型1最好,再用全部训练集训练模型1。

2. 梯度下降

什么是梯度下降?

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

简单说就是从山顶上找一个最快,最陡峭的路线下山。

 梯度下降法用以下面的最优化问题:

\theta ^{*}=\mathop{\arg\min}\limits_{\theta}L(\theta )

  • L:Lossfunction(损失函数)
  • \theta:parameters(参数)

 我们要找一组参数 \theta,让损失函数越小越好,这个问题可以用梯度下降法解决:

假设\theta有里面有两个参数\theta _{1},\theta _{2}​ ,随机选取初始值

\theta ^{0}=\begin{bmatrix} \theta _{1}^{0}\\ \theta _{2}^{0} \end{bmatrix}

\eta:学习率

 将梯度下降法的计算过程进行可视化:

调整学习速率

1. 手动调整学习率

 例如:

 黑色:损失函数的曲线

  • 假设从左边最高点开始,如果学习率刚好,比如红线,就能顺利找到最低点。
  • 如果学习率太小,比如蓝线,就会走的太慢,虽然这种情况给足够多的时间也可以找到最低点,实际情况可能会等不及出结果。
  • 如果学习率有点大,比如绿线,就会在上面震荡,走不下去,永远无法到达最低点。
  • 如果学习率非常大,比如黄线,直接飞出去,更新参数的时候只会发现损失函数越更新越大。

 可视化适合参数是一维或二维,更高维的情况无法可视化。

2. 自适应学习率

简单的思想:随着次数的增加,通过一些因子来减少学习率

  • 通常刚开始,初始点会距离最低点比较远,所以使用大一点的学习率

  • update好几次参数之后,比较靠近最低点,此时减少学习率

  • 比如 \eta ^{t}=\frac{\eta }{\sqrt{t+1}}t 是次数。随着次数的增加,\eta ^{t}减小

学习率不能一个值通用所有特征,不同的参数需要不同的学习率

3. Adagrad 算法

每个参数的学习率都除以之前微分的均方根

普通的梯度下降:

w ^{t+1}\leftarrow w^{t}-\eta ^{t}g^{t}

\eta ^{t}=\frac{\eta }{\sqrt{t+1}}

w是一个参数 

Adagrad :

w ^{t+1}\leftarrow w^{t}-\frac{\eta ^{t}}{\sigma ^{t}}g^{t}

g^{t}=\frac{\partial L(\theta ^{t})}{\partial w}

  • \sigma ^{t}:之前参数的所有微分的均方根,对于每个参数都不一样

 举例

参数更新过程:

 简化过程为:

Adagrad 存在的矛盾

在 Adagrad 中,当梯度(g^{t})越大,步伐应该越大,但分母导致当梯度越大的时候,步伐会越小。

直观解释:

\eta ^{t}=\frac{\eta }{\sqrt{t+1}}g^{t}=\frac{\partial L(\theta ^{t})}{\partial w}

 正式解释:

比如初始点在x_0,最低点为-\frac{b}{2a},最佳的步伐就是x^{^{0}}到最低点之间的距离|x_0+\frac{b}{2a}|,也可以写成|\frac{2ax_0+b}{2a}|。而刚好|2ax_0+b|就是方程绝对值在x_0这一点的微分。

这样可以认为,如果算出来的微分越大,则距离最低点越远。而且最好的步伐和微分的大小成正比。所以如果踏出去的步伐和微分成正比,它可能是比较好的。

结论1-1:梯度越大,距最低点越远。

这个结论在多个参数的时候就不一定成立了。

多参数下结论不一定成立

上图左边是两个参数的损失函数,颜色代表损失函数的值。如果只考虑参数w_{1},就像图中蓝色的线,得到右边上图结果;如果只考虑参数w_{2}​,就像图中绿色的线,得到右边下图的结果。对于a和b,结论1-1是成立的,同理c和b也成立。但是如果对比a和c,就不成立了,c比a大,但c距离最低点是比较近的。

最好的step应该考虑到二次微分:

 进一步解释Adagrad

 对于\sqrt{\sum_{i=0}^t(g^i)^2}就是希望再尽可能不增加过多运算的情况下模拟二次微分。(如果计算二次微分,在实际情况中可能会增加很多的时间消耗)

随机梯度下降法

L^{n}:第n个example的Lossfunction。

\triangledown L(\theta ^{i-1}):对第n个example的Lossfunction的gradient。

常规梯度下降法走一步要处理到所有二十个example,但随机算法此时已经走了二十步(每处理一个example就更新) 

特征缩放

例如:y=b+w_{1}x_{1}+w_{2}x_{2}

两个输入的分布的范围很不一样,建议把他们的范围缩放,使得不同输入的范围是一样的。

为什么要这样做? 

 上图左边是x_{1}的scale比x_{2}要小很多,所以当 w_{1}w_{2}做同样的变化时,w_{1}对y的变化影响是比较小的,w_{2}对y的变化影响是比较大的。

上图右边是两个参数scaling比较接近,右边的绿色图接近圆形。对于左边的情况,上面讲过这种狭长的情形若不用Adagrad比较难处理,两个方向上需要不同的学习率,同一组学习率搞不定。而右边情形更新参数比较容易。左边的梯度下降并不是向着最低点方向走的,而是顺着等高线切线法线方向走的。但绿色就可以向着圆心(最低点)走,这样做参数更新也比较有效率。

怎么做缩放?

方法非常多,举一种常见做法:

上图每一列都是一个例子,里面都有一组特征。

对每一个维度i(绿色框)

  • 计算平均数,记做m_{i}
  • 计算标准差,记做\sigma _{i};

用第r个例子中的第i个输入x_{i}^{r},减掉平均数m_{i},然后除以标准差\sigma _{i},得到的结果是所有的维数都是0,所有的方差都是1。

梯度下降的理论基础

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹿港小小镇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值