李宏毅机器学习-6-卷积神经网络

为什么用CNN?

 

 

CNN架构:首先input一张image,这张image通过convolution layer,接下里做max pooling,再做convolution,再做max pooling。这个process反复数次,次数到觉得够多(反复多少次要事先决定,它就是network的架构(就像你的neural有几层一样),要做几层的convolution,做几层的Max Pooling,在定neural架构时要事先决定)。决定要做的convolution和Max Pooling以后,再做flatten,把flatten的output丢到一般fully connected feedforward network,得到影像辨识结果。

我们刚才讲基于三个对影像处理的观察,设计了CNN架构。

第一:生成一个pattern,不要看整张image,只需要看image的一小部分;

第二:通用的pattern会出现在一张图片的不同区域;

第三:可以做subsampling。

前两个property可以用convolution处理,最后的property可以用Max Pooling处理。后面介绍每一个layer作用,先从convolution开始。

假设network的input是6*6的Image,如果是黑白的,一个pixel只需一个value去描述,1代表有墨水,0代表没有墨水。convolution layer中,它由一组的filter,(其中每一个filter就等于fully connect layer里的一个neuron),每一个filter就是一个matrix(3 *3),每个filter中参数(matrix中每个element值)就是network的parameter(这些parameter需要学习出来,并不是人设计)。

每个filter如果是3*3的detects意味着它是侦测一个3 *3的pattern(看3*3的一个范围)。在侦测pattern的时候不看整张image,只看一个3 *3的范围就可以确定有没有某个pattern的出现。这个就是我们考虑的第一个Property。

这个filter如何在image工作呢?首先第一个filter是一个3*3的matrix,把这个filter放在image的左上角,把filter的9个值和image的9个值做内积,两边都是1,1,1(斜对角),内积的结果就得到3。移动的距离叫做stride(stride大小自己事先设计),内积等于-1。我们先设stride等于1。

把filter往右移动1格得到-1,再右移1格得到-3,再右移动1格得到-1。往下移动1格,得到-3。以此类推(每次都移动一格),直到filter移到右下角,得到-1(得到的值如图所示)

这样本来6 *6的matrix,经过convolution process变为4*4。如果你看filter的值,斜对角的值是1,1,1。所以它的工作就是detect(查找)image中有没有1,1,1(连续左上到右下)。比如:出现在这里(如图所示蓝色的直线),所以这个filter就会告诉你:左上跟左下出现最大的值。

代表这个filter要侦测的pattern,在这张image的左上角和左下角;这件事情考虑了Propetry2。同一个pattern出现在了左上角的位置跟左下角的位置,可以用filter1侦测出来,并不需要不同的filter来做这件事。

在一个convolution layer 里有很多filter(刚才只是一个filter的结果),那另外的filter会有不同的参数(图中显示的filter2),它也做跟filter1一模一样的事情,在filter放到左上角再内积得到结果-1,依次类推。你把filter2跟 input image做完convolution之后,就得到另一个4*4的matrix,红色4*4的matrix跟蓝色的matrix合起来就叫做feature map,有几个filter,就得到几个image(有100个filter,你就得到100个4*4的image) 

刚才举的例子是一张黑白的image,所以input是一个matrix。若换成彩色image,由RGB组成,1个彩色image是几个matrix叠在一起,是一个立方体。要处理彩色image,filter不是一个matrix,而是一个立方体。如果RGB表示一个pixel,那input就是3*6*6,那filter就是3*3*3。

在做convolution时,将filter的9个值和image的9个值做内积(不是把每一个channel分开来算,而是合在一起来算,一个filter就考虑了不同颜色所代表的channel)。

convolution就是fully connected layer把一些weight拿掉。经过convolution的output其实就是一个hidden layer的neural的output。如果把这两个link在一起的话,convolution就是fully connected拿掉一些weight的结果。

 

我们在做convolution时,filter1放到左上角(先考虑filter1),然后inner product,得到内积为3,等于把6*6的image拉直(变成如图所示)。然后有一个neuron的output是3,这个neuron的output考虑了9个pixel,这9个pixel分别是编号(1,2,3,7,8,9,13,14,15)的pixel。这个filter做inner product以后的output3就是某个neuron output3时,就代表这个neuron的weight只连接到(1,2,3,7,8,9,13,14,15)。这9个weight就是filter matrix里面的9个weight(同样的颜色)

在fully connected中,一个neural应该是连接所有input(有36个pixel做input,这个neuron应连接36个input),但是现在只连接了9个input(detain一个pattern,不需要看整张image,看9个input就好),这样做就是用了较少的参数。

将stride=1(移动一格)做内积得到另外一个值-1,假设这个-1是另外一个neural的output,这个neural连接到input的(2,3,4,8,9,10,14,15,16),同样的weight代表同样的颜色。在9个matrix

这就意味着:这两个neuron本来在fully connect里面有自己的weight,当我们在做convolution时,首先把每一个neuron连接的wight减少,使这两个neural共用一个weight。这叫做shared weight,这样做用参数就比原来的更少。

相对convolution,Max Pooling比较简单。我们根据filter1得到4*4的maxtrix,根据filter2得到另一个4*4的matrix,接下来把output ,4个一组。每组中选择它们的平均或者最大,就是把四个value合成一个value,这个可以让image缩小。假设我们选择四个里面的max vlaue保留下来,这样可能会有个问题,把这个放到neuron里面,这样就不能微分,但是可以用微分的办法来处理。

 

做完一次convolution + max pooling,6*6的image变为2*2。这个2*2的pixel的深度取决于有几个filter(50个filter就有50维),得到结果就是一个新的较小image,一个filter代表一个channel。

这件事可重复多次,通过一个convolution + max pooling得到新的较小的image。把这个小的image,再次通过convolution + max pooling,得到一个更小的image。

问题:第一次有25个filter,得到25个feature map,第二个也是由25个filter,那将其做完是不是要得到25^{2}的feature map?不是这样的!

假设第一层filter有2个,第二层的filter在考虑这个imput时会考虑深度,并不是每个channel分开考虑,而是一次考虑所有channel。所以convolution有多少filter,output就有多少filter (convolution有25个filter,output就有25个filter。只不过,这25个filter都是一个立方体)。

 

flatten就是feature map拉直,拉直之后丢到fully connected feedforward netwwork,然后就结束了。 

唯一要改的是:network structure和input format,本来在DNN中input是一个vector,CNN中会考虑 input image的几何空间,所以不能给它一个vector。应该input一个tensor(高维的vector)。为什么要给三维的vector?因为image的长宽高各是一维,若是彩色的话就是第三维。所以要给三维tensor

model.add(Convolution2D25, 3, 3)

25代表有25个filter,3*3代表filter是一个3*3的matrix

Input_shape=(28,28,1)

假设要做手写数字辨识,input是28*28的image,每个pixel都是单一颜色。所以input_shape是(1,28,28)。如果是黑白图为1(black / white),如果是彩色的图时为3(每个pixel用三个值来表述)。

MaxPooling2D(( 2, 2 ))

2,2表示把2*2的feature map里面的pixel拿出来,选择max value

假设input一个1*28*28的image,可以写model.add(Convolution2D( 25, 3, 3, Input_shape=(28,28,1)))。通过convolution得到output是25*26*26(25个filter,通过3*3的filter得到26*26)。然后做max pooling,2*2一组选择 max value得到 25*13*13。

然后再做一次convolution,假设50个filter,每一个filter是3*3,那么channel就是50。13*13的image通过3*3的filter,就成11*11,然后通过2*2的Max Pooling,变成了50*5*5

在第一个convolution layer中,每个filter有9个参数,第二个convolution layer中,虽然每一个filter都是3*3,但不是3*3个参数,因为它的input channel是25,所以参数是3*3*25(225)。

 通过两次convolution,两次Max Pooling,1*28*28变为50*5*5。flatten的目的就是把50*5*5拉直,成了1250维的vector,然后把1250维的vector丢到fully connected。

CNN学到了什么?

很多人常会说:deep learning就是一个黑盒子,然后你learn以后你不知道它得到了什么,所以有很多人不喜欢用这种方法。但还有很多的方法分析的,比如说我们今天来示范一下咋样分析CNN,它到底学到了什么。

分析input第一个filter是比较容易的,因为一个layer每一个filter就是一个3*3的mmatrix,对应到3 *3的范围内的9个pixel。所以你只要看到这个filter的值就可以知道说:它在detain什么东西,所以第一层的filter是很容易理解的,但是你没有办法想要它在做什么事情的是第二层的filter。在第二层我们也是3 *3的filter有50个,但是这些filter的input并不是pixel(3 *3的9个input不是pixel)。而是做完convolution再做Max Pooling的结果。所以这个3 *3的filter就算你把它的weight拿出来,你也不知道它在做什么。另外这个3 *3的filter它考虑的范围并不是3 *3的pixel(9个pixel),而是比9个pxiel更大的范围。不要这3 *3的element的 input是做完convolution再加Max Pooling的结果。所以它实际上在image上看到的范围,是比3 *3还要更大的。那我们咋样来分析一个filter做的事情是什么呢,以下是一个方法。

我们知道现在做第二个convolution layer里面的50个filter,每一个filter的output就是一个matrix(11*11的matrix)。假设我们现在把第k个filter拿出来,它可能是这样子的(如图),每一个element我们就叫做a_{ij}^k(上标是说这是第k个filter,i,j代表在这个matrix里面的第i row和第j column)。

接下来我们定义一个东西叫做:"Degree of the activation of the k-th filter",我们定义一个值代表说:现在第k个filter有多被active(现在的input跟第k个filter有多match),第k个filter被启动的Degree定义成:这个11*11的 matrix里面全部的 element的summation。(input一张image,然后看这个filter output的这个11*11的值全部加起来,当做是这个filter被active的程度)

截下来我们要做的事情是这样子的:我们想知道第k个filter的作用是什么,所以我们想要找一张image,这张image它可以让第k个filter被active的程度最大。

假设input一张image,我们称之为X,那我们现在要解的问题就是:找一个x,它可以让我们现在定义的activation Degreea^k最大,这件事情要咋样做到呢?其实是用gradient ascent你就可以做到这件事(minimize使用gradient descent,maximize使用gradient ascent)

这是事还是蛮神妙的,我们现在是把X当做我们要找的参数用gradient ascent做update,原来在train CNN network neural的时候,input是固定的,model的参数是你需要用gradient descent找出来的,用gradient descent找参数可以让loss被 minimize。但是现在立场是反过来的,现在在这个task里面,model的参数是固定的,我们要让gradient descent 去update这个X,可以让这个activation function的Degree of the activation是最大的。

这个是得到的结果,如果我们随便取12个filter出来,每一个filter都去找一张image,这个image可以让那个filter的activation最大。现在有50个filter,你就要去找50张image,它可以让这些filter的activation最大。我就随便取了前12个filter,可以让它最active的image出来(如图)。

这些image有一个共同的特征就是:某种纹路在图上不断的反复。比如说第三张image,上面是有小小的斜条纹,意味着第三个filter的工作就是detain图上有没有斜的条纹。那不要忘了每一个filter考虑的范围都只是图上一个小小的范围。所以今天一个图上如果出现小小的斜的条纹的话,这个filter就会被active,这个output的值就会比较大。那今天如果让图上所有的范围通通都出现这个小小的斜条纹的话,那这个时候它的Degree activation会是最大的。(因为它的工作就是侦测有没有斜的条纹,所以你给它一个完整的数字的时候,它不会最兴奋。你给它都是斜的条纹的时候,它是最兴奋的)

所以你就会发现:每一个filter的工作就是detain某一张pattern。比如说:第三图detain斜的线条,第四图是detain短的直线条,等等。每一个filter所做的事情就是detain不同角度的线条,如果今天input有不同角度的线条,你就会让某一个activation function,某一个filter的output值最大。

 分析全连接层

在做完convolution和Max Pooling以后,要做一件事情叫做flatten,把flatten的结果丢到neural network里面去。那我们想要知道:在这个neural network里面,每一个neural的工作是什么。

我们要做的事情是这样的:定义第j个neural,它的output叫做$a_j$。接下来我们要做事情就是:找一张image(用gradient ascent的方法找一张X),这个image X你把它丢到neural network里面去,它可以让$a_j$的值被maximize。找到的结果就是这样的(如图)

如图是随便取前9个neural出来,什么样的图丢到CNN里面可以让这9个neural最被active output的值最大,就是这9张图(如图)

这些图跟刚才所观察到图不太一样,在刚在的filter观察到的是类似纹路的图案,在整张图上反复这样的纹路,那是因为每个filter考虑是图上一个小小的range(图上一部分range)。现在每一个neural,在你做flatten以后,每个neural的工作就是去看整张图,而不是是去看图的一小部分。

那今天我们考虑是output呢?(output就是10维,每一维对应一个digit)我们把某一维拿出来,找一张image让那个维度output最大。那我们会得到咋样的image呢?你可以想象说:每一个output,每一个dimension对应到某一个数字。

现在我们找一张image,它可以让对应在数字1的output 最大,那么那张image显然就像看起来是数字1。你可以期待说:我们可以用这个方法让machine自动画出数字。

但是实际上我们得到的结果是这样子的,每一张图分别代表数字0-9。也就是说:我们到output layer对应到0那个neuron,其实是这样的(如图),以此类推。你可能会有疑惑,为什么是这样子的,是不是程序有bug。为了确定程序没有bug,再做了一个实验是:我把每张image(如图)都丢到CNN里面,然后看它classifier的结果是什么。CNN确定就说:这个是1,这个是,...,这个是8。CNN就觉得说:你若拿这张image train出来正确率有98的话,就说:这个就是8。所以就很神奇

这个结果在很多的地方有已经被观察到了,今天的这个neuron network它所学到东西跟我们人类是不太一样的(它所学到的东西跟我们人类想象和认知不一样的)。你可以查看这个链接的paper(如图)

让图更像数字

我们有没有办法让这个图看起来更像数字呢?想法是这样的:一张图是不是数字我们有一些基本的假设,比如说:这些就算你不知道它是什么数字(显然它不是digit),人类手写出来的就不是这个样子。所以我们应该对x做constraint,我们告诉machine,有些x可能会使y很大但不是数字。我们根据人的power-knowledge就知道,这些x不可能是一些数字。那么我们可以加上咋样的constraint呢?(图中白色的亮点代表的是有墨水的,对一个digit来说,图白的部分其实是有限的,对于一个数字来说,一整张图的某一个小部分会有笔画,所以我们应该对这个x做一些限制)

假设image里面的每一个pixel用x_{ij}来表示,(每一个image有28 *28的pixel)我们把所有image上i,j的值取绝对值后加起来。如果你熟悉machine learning的话,这一项就是L1-regularization。然后我们希望说:在找一个x可以让y^i最大的同时让|x_{ij}|的summation越小越好。也就是我们希望找出的image,大部分的地方是没有涂颜色的,只有非常少的部分是有涂颜色的。如果我们加上constraint以后我们得到的结果是这样的(如右图所示),跟左边的图比起来,隐约可以看出来它是一个数字(得到的结果看起来像数字)

你可能会有一个问题,绝对值怎样去微分,下堂课会讲到

你如果加上一些额外的constraint,比如说:你希望相邻的pixel 是同样的颜色等等,你应该可以得到更好的结果。不过其实有更多很好的方法可以让machine generate数字。

Deep Dream

其实上述的想法就是Deep Dream的精神,Deep Dream是说:如果你给machine一张image,它会在这张image里加上它看到的东西。咋样做这件事情呢?你先找一张image,然后将这张image丢到CNN中,把它的某一个hidden layer拿出来(vector),它是一个vector(假设这里是:[3.9, -1.5, 2.3...])。接下来把postitive dimension值调大,把negative dimension值调小(正的变的更正,负的变得更负)。你把这个(调节之后的vector)当做是新的image的目标(把3.9的值变大,把-1.5的值变得更负,2.3的值变得更大。然后找一张image(modify image)用GD方法,让它在hidden layer output是你设下的target)。这样做的话就是让CNN夸大化它所看到的东西,本来它已经看到某一个东西了,你让它看起来更像它原来看到的东西。本来看起来是有一点像东西,它让某一个filter有被active,但是你让它被active的更剧烈(夸大化看到的东西)。

如果你把这张image拿去做Deep Dream的话,你看到的结果是这样子的。右边有一只熊,这个熊原来是一个石头(对机器来说,这个石头有点像熊,它就会强化这件事情,所以它就真的变成了一只熊)。Deep Dream还有一个进阶的版本,叫做Deep Style。

Deep style

今天input一张image,input一张image,让machine去修改这张图,让它有另外一张图的风格 (类似于风格迁移)

得到的结果就是这样子的

其中做法的精神是这样的:原来的image丢给CNN,然后得到CNN的filter的output,CNN的filter的output代表这张image有什么content。接下来你把呐喊这张图也丢到CNN里面,也得到filter的output。我们并不在意一个filter ,而是在意filter和filter之间 的convolution,这个convolution代表了这张image的style。

接下来你用同一个CNN找一张image,这张image它的content像左边这张相片,但同时这张image的style像右边这张相片。你找一张image同时可以maximize左边的图,也可以maximize右边的图。那你得到的结果就是像最底下的这张图。用的就是刚才讲的gradient ascent的方法找一张image,然后maximize这两张图,得到就是底下的这张图。

CNN的应用

围棋

 

我们现在CNN已经在很多不同的应用上,而不是只有影像处理上。比如:CNN现在有一个很知名的应用,就用用在下围棋上面。为什么CNN可以用来下围棋上面呢?

我们知道如果让machine来下围棋,你不见得需要用CNN。其实一般的topic neuron network也可以帮我们做到这件事情。你只要learn一个network(也就是找一个function),它的input是棋盘,output是棋盘上的位置。也就是说:你根据这个棋盘的盘式,如果你下一步要落子的话,你落子的位置其实就可以让machine学会。

所以你用Fully-connected feedforward network也可以帮我们做到让machine下围棋这件事情。也就是你只要告诉input是一个19 *19的vector,每一个vector的dimension对应到棋盘上面的每一个位置。machine就可以学会下围棋了。 如果那个位置有一个黑子的话就是1,如果有一个白子的话就是-1,反之就是0。

但是我们这边采用CNN的话,我们会得到更好的performance。我们之前举的例子是把CNN用在影像上面,也就是input是matrix(也就是把19*19的vector表示成19 *19的matrix),然后当做一个image来看,然后让它output 下一步落子的位置就结束了。

告诉machine说:看到落子在“5之五”,CNN的output就是在“天元”的地方是1,其他地方是0。看到“5之五”和“天元”都有子,CNN的output就是在“五之5”的地方是1,其他地方是0。这个是supervised部分

现在大家都说“AlphaGo”,都是懂懂的样子。但是自从“AlphaGo”用了CNN以后,大家都觉得说:CNN应该很厉害。所以如果你没有用CNN来处理你的问题,别人就会问你为什么不用CNN来处理问题(比如说:面试的时候),CNN不是比较强吗

什么时候应该用CNN呢?image必须有该有的那些特性,在CNN开头就有说:根据那三个观察,所以设计出了CNN这样的架构。在处理image时是特别有效的。为什么这样的架构也同样可以用在围棋上面(因为围棋有一些特性跟影像处理是非常相似的)

第一个是:在image上面,有一些pattern是要比整张image还要小的多的(比如:鸟喙是要比整张的image要小的多),只需要看那一小的部分就知道那是不是鸟喙。在围棋上也有同样的现象,如图所示,一个白子被三个黑子围住(这就是一个pattern),你现在只需要看这一小小的范围,就可以知道白子是不是没“气”了,不需要看整个棋盘才能够知道这件事情,这跟image是有同样的性质。

在“AlphaGo”里面它的第一个layer filter其实就是用5*5的filter,显然做这个设计的人觉得说:围棋最基本的pattern可能都是在5 *5的范围内就可以被侦测出来,不需要看整个棋牌才能知道这件事情。

接下来我们说image还有一个特性:同样的pattern会出现在不同的regions,而他们代表的是同样的意义,在围棋上可能也会有同样的现象。像如图这个pattern可以出现在左上角,也可以出现在右下角,它们都代表了同样的意义。所以你可以用同一个pattern来处理在不同位置的同样的pattern。所以对围棋来说,是有这两个特性的。

AlphaGo

但是没有办法让我想通的地方就是第三点,我们可以对一个image做subsampling,把image变为原来的1/4的大小,但是也不会影响你看这张图的样子。因为基于这个观察,所以有Max Pooling这个layer。但是对围棋来说,你可以做这件事情吗?你可以丢到奇数行偶数类,这样它还是同一个盘式吗,显然不是的,这个让我相当的困扰。

“AlphaGo”里面有用了Max Pooling这个架构,或许这是一个弱点。可以针对这个弱点去攻击它,击败它。但是“AlphaGo”(比李世石还强),没有这个显而易见的弱点

有一天我突然领悟到“AlphaGo”的CNN架构里面有什么特别的地方(“AlphaGo”Paper的附录),在“AlphaGo”Paper里面只说了一句:用CNN架构,但它没有在正文里仔细描述CNN的架构,会不会实际上CNN架构里有什么特别的玄机呢?

在“AlphaGo”Paper的附录里面,描述了neuron network structure,它的input是一个19 *19 *48的image。19 *1是可以理解,因为棋盘就是19 *19。48是咋样来的呢?对于“AlphaGo”来说,它把每一个位置都用48个value来描述。这里面的value包括:我们只要在一个位置来描述有没有白子,有没有黑子;还加上了domain-knowledge(不只是说:有没有黑子或者白子,还会看这个位置是不是出于没“气”的状态,等等)

如果读完这段你会发现:第一个layer有做 zero pads。也就是说:把原来19*19的image外围补上更多的0,让它变成23 *23的image。

第一个hidden layer用的是5*5 filter(总共有k个filter),k的值在Paper中用的是192(k=192);stride设为1;使用RLU activation function等等。

然后你就会发现“AlphaGo”是没有用Max Pooling,所以这个neuron network的架构设计就是“运用之妙,存乎一心”。虽然在image里面我们都会用Max Pooling这个架构,但是针对围棋的特性来设计neuron network的时候,我们是不需要Max Pooling这个架构的,所以在“AlphaGo”里面没有这个架构.

语音

CNN也可以用在其它的task里面,比如说:CNN也用在影像处理上。如图是一段声音,你可以把一段声音表示成Spectrogram(横轴是时间,纵轴是那段时间里面声音的频率),红色代表:在那段时间里那一频率的energy比较大。

这张image其实是我说“你好”,然后看到的Spectrogram。有通过训练的人,看这张image,就知道这句话的内容是什么。

人既然可以看这个image就可以知道是什么样的声音讯号,那我们也可以让机器把这个Spectrogram当做一张image。然后用CNN来判断:input一张image,它是对应什么样的声音讯号(单位可能是phone)。但是神奇的地方是:CNN里面的时候,在语音上,我们通常只考虑在frequency方向上移动的filter。也就是说:我们的filter是长方形的,其中宽是跟image的宽是一样的,我们在移动filter的时候,我们移这个方向(如图所示)

如果把filter向时间的方向移动的话,结果是没有太大的帮助。这样的原因是:在语音里面,CNN的output还会接其他的东西(比如:LSTM),所以在向时间方向移动是没有太多的帮助。

为什么在频率上的filter会有帮助呢?我们用filter的目的是:为了detain同样的pattern出现在不同的range,我们都可以用同一个的filter detain出来。那在声音讯号上面,男生跟女生发同样的声音(同样说“你好”),Spectrogram看起来是非常不一样的,它们的不同可能只是频率的区别而已(男生的“你好”跟女生的“你好”,它们的pattern其实是一样的)

所以今天我们把filter在frequency direction移动是有效的。当我们把CNN用在application时,你永远要想一想,这个application的特性是什么,根据那个application的特性来design network的structure

文本

我们知道CNN耶可以用在文字处理上面,这个是从paper截下来的图。在文字处理上面,假设你要做的是:让machine侦测这个word sequence代表的是positive还是negative。首先input一个word sequence,你把word sequence里面的每一个word都用一个vector来表示。这边的每一个vector代表word本身的sementic,如果两个word含义越接近的话,那它们的vector在高维的空间上就越接近,这个就叫做“wordembedding”(每一个word用vector来表示)。

当你把每一个word用vector来表示的时候,你把sentence所有的word排在一起,它就变成一张image。你可以把CNN套用在这个image上面。

当我们把CNN用在文字处理上的时候,你的filter其实是这个样子的(如图所示)。它的高跟image是一样的,你把filter沿着句子里面词汇的顺序来移动,然后你就会得到一个vector。不同的filter就会得到不同的vector,然后Max Pooling,然后把Max Pooling的结果丢到fully connect里面,就会得到最后的结果。在文字处理上,filter只在时间的序列上移动,不会在“embedding dimension”这个方向上移动。如果你有做过类似的task(文字处理),知道“embedding dimension”指的是什么,你就会知道在“embedding dimension”反向上移动是没有帮助的,因为在word embedding里面每一个dimension的含义其实是独立的。所以当我们如果使用CNN的时候,你会假设说:第二个dimension跟第一个dimension有某种特别的关系;第四个dimension跟第五个dimension有某种特别的关系。这个关系是重复的(这个pattern出现在不同的位置是同样的意思)。但是在word embedding里面,不同dimension是独立的(independent)。所以在embedding dimension移动是没有意义的,所以你在做文字处理的时候,你只会在sentence顺序上移动filter,这个是另外的例子。

Reference

如果你想知道更多visualization事情的话,以上是一些reference。

如果你想要用Degree的方法来让machine自动产生一个digit,这件事是不太成功的,但是有很多其它的方法,可以让machine画出非常清晰的图。这里列了几个方法,比如说:PixelRNN,VAE,GAN来給参考。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹿港小小镇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值