题目描述
给定一个整数数组prices
,其中第 prices[i]
表示第 i
天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
思路
动态规划,参考:代码随想录,这里写的很详细【确定好4个状态】
dp数组是2维,一共4个状态,根据4个状态去写对应的转换公式。
- 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
- 不持有股票状态,这里就有两种卖出股票状态
- 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
- 状态三:今天卖出股票
- 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天
最后取状态2,3,4中最大的返回
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
n = len(prices)
dp = [[0]*4 for _ in range(n)]
dp[0][0] = -prices[0]
# 状态0是买入
# 状态1是卖出很久
# 状态2是今天刚卖出
# 状态3是冷冻期
for i in range(1,len(prices)):
dp[i][0] = max(dp[i-1][0], max(dp[i-1][3]-prices[i],dp[i-1][1]-prices[i]))
dp[i][1] = max(dp[i-1][1], dp[i-1][3])
dp[i][2] = dp[i-1][0]+prices[i]
dp[i][3] = dp[i-1][2]
return max(dp[n-1][1],dp[n-1][2],dp[n-1][3])
if __name__ == "__main__":
s = Solution()
prices = [1, 2, 3, 0, 2]
print(s.maxProfit(prices))
二刷:
class Solution(object):
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
# 0:持有股票
# 1:未持有股票
# 2:卖出股票
# 3:冷冻期
dp = [[0]*4 for _ in range(len(prices))]
dp[0][0] = -prices[0]
for i in range(1, len(prices)):
dp[i][0] = max(dp[i-1][0], dp[i-1][3]-prices[i], dp[i-1][1]-prices[i])
dp[i][1] = max(dp[i-1][3], dp[i-1][1])
dp[i][2] = dp[i-1][0]+prices[i]
dp[i][3] = dp[i-1][2]
return max(dp[-1][1], dp[-1][2], dp[-1][3])
记忆点:
4个状态