结巴的几种使用

分词 jieba.cut 三种模式

分词的位置 jieba.tokenize

分词的添加 jieba.add_word

t提取关键词

import jieba.analyse

jieba.analyse.extract_tags

自定义词典 jieba.load_userdict()

去除停用词

stopwords={}.fromkeys(['的‘,’了”]

Ag

形语素

形容词性语素。形容词代码为 a,语素代码g前面置以A。

a

形容词

取英语形容词 adjective的第1个字母。

ad

副形词

直接作状语的形容词。形容词代码 a和副词代码d并在一起。

an

名形词

具有名词功能的形容词。形容词代码 a和名词代码n并在一起。

b

区别词

取汉字“别”的声母。

c

连词

取英语连词 conjunction的第1个字母。

dg

副语素

副词性语素。副词代码为 d,语素代码g前面置以D。

d

副词

取 adverb的第2个字母,因其第1个字母已用于形容词。

e

叹词

取英语叹词 exclamation的第1个字母。

f

方位词

取汉字“方”

g

语素

绝大多数语素都能作为合成词的“词根”,取汉字“根”的声母。

h

前接成分

取英语 head的第1个字母。

i

成语

取英语成语 idiom的第1个字母。

j

简称略语

取汉字“简”的声母。

k

后接成分

 

l

习用语

习用语尚未成为成语,有点“临时性”,取“临”的声母。

m

数词

取英语 numeral的第3个字母,n,u已有他用。

Ng

名语素

名词性语素。名词代码为 n,语素代码g前面置以N。

n

名词

取英语名词 noun的第1个字母。

nr

人名

名词代码 n和“人(ren)”的声母并在一起。

ns

地名

名词代码 n和处所词代码s并在一起。

nt

机构团体

“团”的声母为 t,名词代码n和t并在一起。

nz

其他专名

“专”的声母的第 1个字母为z,名词代码n和z并在一起。

o

拟声词

取英语拟声词 onomatopoeia的第1个字母。

p

介词

取英语介词 prepositional的第1个字母。

q

量词

取英语 quantity的第1个字母。

r

代词

取英语代词 pronoun的第2个字母,因p已用于介词。

s

处所词

取英语 space的第1个字母。

tg

时语素

时间词性语素。时间词代码为 t,在语素的代码g前面置以T。

t

时间词

取英语 time的第1个字母。

u

助词

取英语助词 auxiliary

vg

动语素

动词性语素。动词代码为 v。在语素的代码g前面置以V。

v

动词

取英语动词 verb的第一个字母。

vd

副动词

直接作状语的动词。动词和副词的代码并在一起。

vn

名动词

指具有名词功能的动词。动词和名词的代码并在一起。

w

标点符号

 

x

非语素字

非语素字只是一个符号,字母 x通常用于代表未知数、符号。

y

语气词

取汉字“语”的声母。

z

状态词

取汉字“状”的声母的前一个字母。

un

未知词

不可识别词及用户自定义词组。取英文Unkonwn首两个字母。(非北大标准,CSW分词中定义)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
结巴分词早期版本。 * 结巴分词(java版) jieba-analysis 首先感谢jieba分词原作者[[https://github.com/fxsjy][fxsjy]],没有他的无私贡献,我们也不会结识到结巴 分词,更不会有现在的java版本。 结巴分词的原始版本为python编写,目前该项目在github上的关注量为170, 打星727次(最新的数据以原仓库为准),Fork238次,可以说已经有一定的用户群。 结巴分词(java版)只保留的原项目针对搜索引擎分词的功能(cut_for_index、cut_for_search),词性标注,关键词提取没有实现(今后如用到,可以考虑实现)。 * 简介 ** 支持分词模式 - Search模式,用于对用户查询词分词 - Index模式,用于对索引文档分词 ** 特性 - 支持多种分词模式 - 全角统一转成半角 - 用户词典功能 - conf 目录有整理的搜狗细胞词库 - 支持词性标注(感谢 [[https://github.com/linkerlin][@linkerlin]] 的贡献) * 如何获取 - 当前稳定版本 #+BEGIN_SRC xml com.huaban jieba-analysis 0.0.2 #+END_SRC - 当前快照版本 - 支持词性标注 [[https://github.com/huaban/jieba-analysis/pull/4][#4]] - 修复以'-'连接词分词错误问题 [[https://github.com/huaban/jieba-analysis/issues/3][#3]] #+BEGIN_SRC xml com.huaban jieba-analysis 1.0.0-SNAPSHOT #+END_SRC * 如何使用 - Demo #+BEGIN_SRC java @Test public void testDemo() { JiebaSegmenter segmenter = new JiebaSegmenter(); String[] sentences = new String[] {"这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。", "我不喜欢日本和服。", "雷猴回归人间。", "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作", "结果婚的和尚未结过婚的"}; for (String sentence : sentences) { System.out.println(segmenter.process(sentence, SegMode.INDEX).toString()); } } #+END_SRC * 算法(wiki补充...) - [ ] 基于 =trie= 树结构实现高效词图扫描 - [ ] 生成所有切词可能的有向无环图 =DAG= - [ ] 采用动态规划算法计算最佳切词组合 - [ ] 基于 =HMM= 模型,采用 =Viterbi= (维特比)算法实现未登录词识别 * 性能评估 - 测试机配置 #+BEGIN_SRC screen Processor 2 Intel(R) Pentium(R) CPU G620 @ 2.60GHz Memory:8GB 分词测试时机器开了许多应用(eclipse、emacs、chrome...),可能 会影响到测试速度 #+END_SRC - [[src/test/resources/test.txt][测试文本]] - 测试结果(单线程,对测试文本逐行分词,并循环调用上万次) #+BEGIN_SRC screen 循环调用一万次 第一次测试结果: time elapsed:12373, rate:2486.986533kb/s, words:917319.94/s 第二次测试结果: time elapsed:12284, rate:2505.005241kb/s, words:923966.10/s 第三次测试结果: time elapsed:12336, rate:2494.445880kb/s, words:920071.30/s 循环调用2万次 第一次测试结果: time elapsed:22237, rate:2767.593144kb/s, words:1020821.12/s 第二次测试结果: time elapsed:22435, rate:2743.167762kb/s, words:1011811.87/s 第三次测试结果: time elapsed:22102, rate:2784.497726kb/s, words:1027056.34/s 统计结果:词典加载时间1.8s左右,分词效率每秒2Mb多,近100万词。 2 Processor Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz 12G 测试效果 time elapsed:19597, rate:3140.428063kb/s, words:1158340.52/s time elapsed:20122, rate:3058.491639kb/s, words:1128118.44/s #+END_SRC

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值