注意力机制论文研读

本文作者通过研读多篇关于注意力机制的论文,包括基于注意力的图像分类和细粒度物体识别,探讨了在卷积网络中不同位置引入注意力机制的影响。作者强调理解原始英文文献的重要性,并对追踪state of the art的途径提出了疑问,是否应关注竞赛论文或顶级会议。此外,还提及了SENET和CBAM等近期模型,计划深入学习并理解这些先进的注意力机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:
计算机视觉中的注意力机制

然后找了个博客,里面有论文引用,这篇博客真不错,把其论文好好看看
https://blog.csdn.net/Wayne2019/article/details/78488142

基于注意力机制的细腻度图像分类,里面也有篇论文,值得一看。

另外,我想寻找2018年甚至2019年的这领域的文章。

突然发现一片硕士论文讲述的是注意力机制的,基于注意力机制的图像分类深度学习方法研究,,可以作为我论文行文结构的借鉴。阅读记录如下:
第三章,基于卷积激活输出的多通道注意力机制图像分类,这一章明白,你得前面整它几层卷积,来进行充分提取底层特征,然后后面才好加注意力机制。
实验中提到了,使用了VGG16前几层的权重作为预训练基础网络
换了个说法,把人家预训练好的模型说成包含多层次特征,

还有一篇没下载下来,结合注意力机制的细粒度物体分类技术研究不知道质量如何。

我有种预感,当

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值