论文阅读: 图像分类中的注意力机制(attention)

本文探讨了注意力机制如何在图像分类任务中发挥作用,包括软注意力和硬注意力的不同实现,如SENet、Residual Attention Network等。这些模型通过模仿人类注意力过程,提升了计算机视觉模型的性能,且许多技巧可以直接集成到现有网络架构中,增强了模型的适用性。
摘要由CSDN通过智能技术生成

本文简要总结一下attention机制在图像分类任务中的应用。attention作为一种机制,有其认知神经或者生物学原理: 注意力的认知神经机制是什么?
如何从生物学的角度来定义注意力?

在计算机视觉领域,注意力机制有各种不同形式的实现,可以大致分为soft attention和hard attention[1]。Soft attention的典型例子是stn[3],Residual Attention Network[5]和Two-level Attention[2],这种注意力机制是可微的,可以通过反向传播训练。而Hard attention 需要预测关注的区域,通常使用强化学习来训练,例子见[1]中列举的参考文献。

[2]中集成了三种类型的attention: 提供候选patch的bottom-up, 依据object筛选相关patch的object-level top-down和定位区分性部件的part-level top-down。

[5]这篇文章写得很不错,值得细读。提出了一种Residual attention network,是attention module的堆叠。在每个module中均使用bottom-up top-down结构(参考Stacked hourglass networks[7])。The bottom-up top-down structure mimics the fast feedforward and feedback attention process。利用残差机制使得网络深度可以进一步扩展。网络结构如下图:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值