两个整数相乘为什么等于它们的最小公倍数乘以它们的最大公因数

首先,标题这句话可以当结论记住。对一些做竞赛题的同学做到相关题有一定好处。
           举个例子,两数为6和9。最小公倍数18,最大公因数3,6*9=3*18=54。
           最大公因数的作用就是说当两个数同时除以这个最大的两数共有的因数后两数满足互质。6*9=9*6=54,54是6和9的公倍数,但不是最小公倍数,因为它们各自的另一个因子伙伴分别为9和6,正好有最大公因数3,也就是说,上一等式稍微变形成6*(9/3)=9*(6/3)=54/3,即6*3=9*2=18依然成立(等式两边同除了3)。而18便是6和9的最小公倍数了。因为3和2互质,等号两边不能再除了。
            题目就已经被证明出来了,如果还不知道哪里证出来的。那就再看一遍吧。
   while(没看懂)  {
        请再看一遍;
}
### 回答1: 题目要求求出给定两个整数的最大公约数和最小公倍数。 输入格式:在一行中输入两个整数m和n(≤100)。 回答: 输入两个整数m和n,我们可以使用辗转相除法求它们的最大公约数,也可以使用它们的乘积除以最大公约数求得最小公倍数。 最大公约数可以用以下代码实现: ```python def gcd(m, n): if n == : return m else: return gcd(n, m % n) ``` 最小公倍数可以用以下代码实现: ```python def lcm(m, n): return m * n // gcd(m, n) ``` 其中,// 表示整除运算符。 完整代码如下: ```python m, n = map(int, input().split()) def gcd(m, n): if n == : return m else: return gcd(n, m % n) def lcm(m, n): return m * n // gcd(m, n) print(gcd(m, n), lcm(m, n)) ``` ### 回答2: 最大公约数和最小公倍数数学中的两个基本概念。最大公约数,即最大公因数,指两个或多个整数共有约数中最大的那个,而最小公倍数则指能同时被这两个或多个整数整除的最小正整数。 对于输入的两个整数m和n,我们可以采用辗转相除法求最大公约数,具体步骤如下: 1. 如果n等于0,则m就是最大公约数。 2. 否则,求m除以n的余数,将n赋值为新的m,将余数赋值为新的n,然后重复1的步骤。 代码如下: ``` #include <stdio.h> int main() { int m, n, a, b, temp; scanf("%d%d", &m, &n); a = m; b = n; // 辗转相除法求最大公约数 while (n != 0) { temp = m % n; m = n; n = temp; } // 最小公倍数等于两数之积除以最大公约数 printf("%d %d\n", m, a * b / m); return 0; } ``` 其中,a和b保存原始输入值,temp用来交换m和n的值。最终输出得到的最大公约数和最小公倍数。 ### 回答3: 首先,最大公约数(GCD)和最小公倍数(LCM)是两个数学中的重要概念。最大公约数是指两个数中最大的能够同时整除它们的数,而最小公倍数则是指两个数中最小的能够同时被它们整除的数。 下面我们来介绍一些求解最大公约数和最小公倍数的方法。 求解最大公约数: 方法一:因数分解法 如果要求解两个数的最大公约数,我们可以先对这两个数进行因数分解,然后找出它们共有的素因数的乘积。最后,再把这些共有的素因数相乘得到的结果就是这两个数的最大公约数。 例如,我们要求解24和36的最大公约数,首先对它们进行因数分解: 24=2×2×2×3 36=2×2×3×3 可以发现,24和36共有2×2×3=12这些素因数,所以它们的最大公约数是12。 方法二:辗转相除法 我们也可以使用辗转相除法求解最大公约数。具体方法如下: 对于任意两个整数m和n(m>n),我们可以进行多次相除,直到余数为0为止,此时最后一次除数即为它们的最大公约数。 例如,我们要求解24和36的最大公约数,首先用辗转相除法进行计算: 36÷24=1……12 24÷12=2……0 所以,24和36的最大公约数是12。 求解最小公倍数: 方法一:倍数法 如果要求解两个整数最小公倍数,我们可以按照以下步骤进行计算: (1)求出它们的最大公约数; (2)把这两个数分别除以最大公约数,得到它们的约分后的形式; (3)最小公倍数等于它们的约分后的形式相乘后再乘以最大公约数。 例如,我们要求解24和36的最小公倍数,首先求出它们的最大公约数为12,然后将24和36分别除以12得到2和3的约分后的形式,最后最小公倍数等于2×3×12=72。 方法二:公式法 最小公倍数也可以用以下公式计算: 最小公倍数=两数之积÷最大公约数 例如,我们要求解24和36的最小公倍数,首先求出它们的最大公约数为12,然后将24×36除以12得到72,最终的最小公倍数就是72。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值