主成分分析PCA & 奇异值分解SVD

本文介绍了主成分分析PCA和奇异值分解SVD的基础概念,包括特征值、特征向量与降维的关系。通过图解和数学推导,详细阐述PCA如何通过保留最大特征值的特征向量实现数据降维。同时,探讨了SVD在非方阵特征提取中的作用,展示了在图像压缩和推荐系统等领域的应用。最后,对比了PCA与因子分析在特征降维上的区别。
摘要由CSDN通过智能技术生成

一 特征值和特征向量

想了解PCA和SVD,首先要了解的一个概念就是特征值和特征向量。Ax = \lambda x        A是矩阵,x是向量、\lambda是数。如果满足公式,则说\lambda是矩阵A的一个特征值,非零向量x为矩阵A的属于特征值\lambda的特征向量。矩阵A的特征值和特征向量可以写成以下格式,请注意。

A =\left ( x1,x2,...,xn \right )\begin{bmatrix} \lambda 1&0&...&0 \\ 0&\lambda 2&...& 0\\ ...& ... & ... & \\ 0&0&...&\lambda n \end{bmatrix}\left ( x1,x2,...,xn \right )^{-1}

为什么能把x叫做A矩阵的特征向量呢,其实矩阵乘向量可以理解成对向量进行旋转和拉长。当然并不是所有向量都可以被旋转,矩阵无法旋转的非零向量就是该矩阵的特征向量!!

举一个不恰当的例子,当你想描述一部手机的时候,你会描述电池、屏幕和品牌等等手机的特征。现在轮到矩阵了,当你想描述一个矩阵的时候,不妨从它的特征向量入手。(降维可以简单理解成当矩阵的某个特征向量对应的特征值很小很小的时候,就可以抛弃这个特征向量了。)

  手机 矩阵
特征1 电池(3000毫安) x1(\lambda 1
特征2 屏幕(4寸) x2(\lambda 2

二 PCA

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值