论文笔记Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

目录

一、创新点

二、模型结构

1.Feature Learning Module

2.Meta Upscale Module

1)位置投影Location Projection

2)权重预测Weight Prediction

3)特征映射Feature Mapping

三、实验细节

四、结果

1.不同采样因子Meta-RDN与RDN、EDSR结果对比

2.运行速度对比

3.与state-of-the-art模型性能对比

4.生成SR展示



本文出自中科院、CASIA、旷视、清华等机构。模型功能性突出,已被CVPR2019接收。

原文地址:http://arxiv.org/abs/1903.00875v1

代码地址:https://github.com/XuecaiHu/Meta-SR-Pytorch


一、创新点

引入元学习的思想构造Meta-Upscale Module,首次实现LR图像通过单模型进行任意尺度的上采样,通过动态预测上采样卷积参数,在应用上达成类似在图片查看器中滚动滑轮查看图片的效果。

二、模型结构

整个网络分为两个模块:Feature Learning Module和Meta Upscale Module。这里主要讲下Meta Upscale Module。

1.Feature Learning Module

Feature Learning Module其实就是RDN模型,模型细节参考这里。这里RDN如图1所示使用的3个卷积层和16个RDB(Residual Dense Block),每个RDB包含8个卷积层,其growth rate设为64,即特征通道为64。

注意,这里使用RDN是因为它的效果最好。同样也可使用EDSR、RCAN等其他模型前端作为Feature Learning Module。

2.Meta Upscale Module

这个模块依据Meta Learning的思想,学习对应不同因子上采样的卷积核数量及权重参数。关于元学习(Meta Learning),又称Learning to learn,具体百度,其中权重预测是Meta Learning的主要应用方向之一。

Meta Upscale Module本质是一个FC网络,能生成对应不同上采样因子SR的卷积核数量及参数,这里由FC层+ReLU层+FC层构造。由于网络输入输出维度差别较大,FC层神经节点数设置为256。

网络输入Size是3,输出Size是inC\times outC\times k\times k(将其构造成多个k\times k大小的卷积核),共计输入输出H\times W组,即图像的每个像素点送入模型作预测。这里的输出维度满足Feature Learning Module提取的特征图数(即inC)、生成SR图像通道数(outC

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值