目录
本文出自中科院、CASIA、旷视、清华等机构。模型功能性突出,已被CVPR2019接收。
原文地址:http://arxiv.org/abs/1903.00875v1
代码地址:https://github.com/XuecaiHu/Meta-SR-Pytorch
一、创新点
引入元学习的思想构造Meta-Upscale Module,首次实现LR图像通过单模型进行任意尺度的上采样,通过动态预测上采样卷积参数,在应用上达成类似在图片查看器中滚动滑轮查看图片的效果。
二、模型结构
整个网络分为两个模块:Feature Learning Module和Meta Upscale Module。这里主要讲下Meta Upscale Module。
1.Feature Learning Module
Feature Learning Module其实就是RDN模型,模型细节参考这里。这里RDN如图1所示使用的3个卷积层和16个RDB(Residual Dense Block),每个RDB包含8个卷积层,其growth rate设为64,即特征通道为64。
注意,这里使用RDN是因为它的效果最好。同样也可使用EDSR、RCAN等其他模型前端作为Feature Learning Module。
2.Meta Upscale Module
这个模块依据Meta Learning的思想,学习对应不同因子上采样的卷积核数量及权重参数。关于元学习(Meta Learning),又称Learning to learn,具体百度,其中权重预测是Meta Learning的主要应用方向之一。
Meta Upscale Module本质是一个FC网络,能生成对应不同上采样因子SR的卷积核数量及参数,这里由FC层+ReLU层+FC层构造。由于网络输入输出维度差别较大,FC层神经节点数设置为256。
网络输入Size是3,输出Size是(将其构造成多个
大小的卷积核),共计输入输出
组,即图像的每个像素点送入模型作预测。这里的输出维度满足Feature Learning Module提取的特征图数(即
)、生成SR图像通道数(
,