论文 Meta-SR: A Magnification-Arbitrary Network for Super-Resolution阅读笔记

Meta-SR: A Magnifification-Arbitrary Network for Super-Resolution
是CVPR2019的论文,由中科院、CASIA、旷视、清华等联合发表。
论文地址:http://arxiv.org/abs/1903.00875v1
pytorch代码地址:https://github.com/XuecaiHu/Meta-SR-Pytorch

一 :论文要解决的问题

            之前随着DCNN(deep convolution neural network)的发展,SR(super-resolution)也取得很大的进步。但是如果把图像放大任意比例一直都被忽视。之前的问题把图像放大不同比例做为不同独立的任务,为每一个比例设计一个特定的放大模型,并且只能放大整数倍数。这篇论文就是要实现用一个模型可以放大任意比例(包括非整数)。因为在实际场景是很常用的。比如你用鼠标滑动放大查看图片。

二:论文的整体架构

            论文中的方法叫做Meta-SR,该方法有两个模块,the Feature Learning Module 和 the Meta Upscale Module。
the Feature Learning Module 是用于在LR image(低分辨率图像)上提取特征,特征提取后通道数可能变多,但是特征图的长宽与LR image相同。the Meta Upscale Module用于动态为HR image上的每一个点预测权重,主要运用到元学习(不是通过大量的数据来预测权重,而是让机器总结学习到如何去预测权重,就是学习到学习的方法,而不是物体的规律,元学习可用于少样本学习,和迁移学习)。整体架构图如下:
在这里插入图片描述

三:the Feature Learning Module

          结构图如下:在这里插入图片描述
    有3个卷积层和16个residual dense blocks(RDB),RDB的结构图如下:
在这里插入图片描述
其中ResNet(残差网络),把上一个输出值加到了下一个输出输出值上,这样可以在增加网络深度的时候,防止vanishing gradient (梯度弥散)。
下面讲一下Densenet(密集网络)的结构图:
在这里插入图片描述
每个Dense Block中的特征图的大小是相同的,每一个输出都合上前面每一个输出公式为

在这里插入图片描述
      上面的H()代表是非线性转化函数(non-liear transformation),它是一个组合操作,其可能包括一系列的BN(Batch Normalization),ReLU,Pooling及Conv操作。它们是在channel维度上连接在一起的。内部结构图:
在这里插入图片描述
      DenseBlock内部可以采用bottleneck层来减少计算量,主要是原有的结构中增加1x1 Conv。即BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv,称为DenseNet-B结构。其中1x1 Conv它起到的作用是降低特征数量,从而提升计算效率。如图:
在这里插入图片描述
      所有DenseBlock中各个层卷积之后均输出K 个特征图,即得到的特征图的channel数为 K,或者说采用 K个卷积核。 K在DenseNet称为growth rate,这是一个超参数。论文中设置的K为64。再合ResNet结合。好这就是 the Feature Learning Module。

四: the Meta Upscale Module

      the Meta Upscale Module分为3块,the Location Projection, the Weight Prediction and the Feature Mapping。讲之前先明白几个变量
ILR LR image(低分辨率图像)
IHR 原高分辨率图像
ISR 模型的产生的高分辨率图像
ISR的 ground-truth (这个词表示正确分类的标签)是 IHR
FLR 表示低分辨率上的特征图(the Feature Learning Module所产生的)

4.1: the Location Projectiong

在这里插入图片描述
(i,j)表示高分辨上的某像素点,(i,j)表示对应低分辨率上的对应点,他们的关系用r(缩放比例来确定),公式如上图。
      论文中举一个例子,放大2倍和1.5倍。低分辨率上有一些点是决定高分辨率上的1个点,有些低分辨率上的点是决定高分辨率上的2个点。如图:
在这里插入图片描述

4.2: Weight Prediction

权重计算如下图:
在这里插入图片描述
      W(i,j)代表高分辨率图上每一个像素点的权重,vij表示权重预测网络的输入,θ表示的是网络预测的参数。流程如下图:
在这里插入图片描述
      输入为HW*3(3表示的是3个颜色通道,当为灰度图时颜色通道为1),然后经过一个全连接和一个ReLU激活函数,然后再经过一个FC(论文中用的隐藏神经元数为256)。每一个点输入都会产生形状为 inC*outC*k*k,inC等于FLR的channel数,outC等于的是高分辨率的通道数,k表示的是卷积核的大小论文中K等于3)。

4.3: Feature Mapping

公式为:
在这里插入图片描述
这里用对应的FLR和W(i,j)进行矩阵相乘。(这里我也有疑惑就是如果3*3和3*3的矩阵相乘以后就是也是3*3的矩阵,但是这里得到的是一个点。网上说是矩阵间相乘,元素间卷积,这可能还是要把代码慢慢看懂才能够完全理解这一部分)。

5: Experiments

      用六个自己设计的baseline,用bicubic interpolation生成LR图像。放大的比例从1到4,变化步长为0.1。

5.1: 数据和评估标准:

      数据用的是 DIV2K,800张训练集,100张验证集,100张测试集。因为测试集中的ground truth为公开,所有论文用的validation set上的结果。
     用L1做为损失函数。用PSNR(Peak Signal-to-Noise Ratio) and SSIM(structural similarity index)做为评估。
      PSNR(峰值信噪比)公式如下:
在这里插入图片描述
在这里插入图片描述
其中,MAXI是表示图像点颜色的最大数值,如果每个采样点用 8 位表示,那么就是 255。所以MSE越小,则PSNR越大;所以PSNR越大,代表着图像质量越好。
PSNR高于40dB说明图像质量极好(即非常接近原始图像),
在30—40dB通常表示图像质量是好的(即失真可以察觉但可以接受),
在20—30dB说明图像质量差;PSNR低于20dB图像不可接受。
     SSIM 公式基于样本x和y之间的三个比较衡量:亮度 (luminance):l(x,y)、对比度 (contrast) :c(x,y)和结构 (structure): s(x,y)
在这里插入图片描述
在这里插入图片描述
论文中把图片转化为YCbCr,在Y(亮度)上做SSIM。

5.2: 设计六个baseline:

因为没有任意放大的工作所以设计了6个baseline来进行对比。
bicubic:直接用bicubic interpolation放大图片
RDN(x1),EDSR(x1):将LR先放大r倍,再放入RDN和EDSR网络中产生SR
RDN(x2),EDSR(x2):将LR输入网络,产生HR,再将HR缩小为r/k倍,再放入RDN和EDSR网络K次中产生SR 。如果r>k,先将LR放大再输入网络,产生HR,再将HR缩小为r/k倍,再放入RDN和EDSR网络K次中产生SR(k=2)
RDN(x4),EDSR(x4):原理同RDN(x2)相同,只是k=4。就是说x4代表k的大小。
BicuConv :对the final feature maps用interpolation。最后的the upscale module(放大模块)对任何放大比例用同一个卷积层。
Meta-Bicu:也对the final feature maps用interpolation,但是为每一个比例预测一个权重。
实验结果图(一部分):
在这里插入图片描述

5.3: 耗时:

在这里插入图片描述
FL(生成特征图的时间),WP(预测权重的时间),Upscale(放大模块所用时间)。
虽然单个的放大时间,该方法不占优势,但是放大8 和16这个方法就要快很多(论文中无该实验对比),另外当要放大任意比例的时候就会比其他快很多。因为其他的需要run各个比例模型。
还要其他两个对比实验,也表示了该方法的优越性。
好这就是这篇论文全部内容了。在B站上也以视频方式讲解了该论文账号昵称同博客昵称。希望能够帮助大家,一起成长。喜欢就点一个赞吧,笔芯。

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值