Meta-SR:A Magnification-Arbitrary Network for Super-Resolution 论文阅读笔记

Meta-SR:A Magnification-Arbitrary Network for Super-Resolution 论文阅读笔记

论文链接

本文主要的创新点:

  • 提出了Meta-Upscale module,首次通过dynamically predict weights,实现了单一模型对输入图片进行任意尺度的上采样

Figure 1. An instance of our Meta-SR based on RDN [36]. We also call the network Meta-RDN. (a) The Residual Dense Block proposed by RDN [36]. (b) The Feature Learning Module which generates the shared feature maps for arbitrary scale factor. (c) For each pixel on the SR image, we project it onto the LR image. The proposed Meta-Upscale Module takes a sequence of coordinate related and scale-related vectors as input to predict the weights for convolution filters. By doing the convolution operation, our Meta-Upscale finally generate theHR image.

Feature Learning Module

feature learning module与普通的超分网络一样,本文使用RDN(residual dense network)作为超分网络,RDN网络结构包含3个卷积层以及16个residual dense blocks(RDBs) ,RDB结构如上图所示,每个RDB包含8个卷积层,特征通道数为64。

Meta-Upscale Module

利用Feature Learning Module提取特征 F L R F^{LR} FLR,假设上采样尺度因子为 r r r,对SR图像中的每个像素点 ( i , j ) (i,j) (i,j)的值,都由 F L R F^{LR} FLR中的像素点 ( i ′ , j ′ ) (i^{'}, j^{'}) (i,j)和相对应的卷积核决定。因此,首先,up-scale module需要将 ( i , j ) (i,j) (i,j) ( i ′ , j ′ ) (i^{'}, j^{'}) (i,j)对应,然后利用一个特殊的卷积核,根据 ( i ′ , j ′ ) (i^{'}, j^{'}) (i,j)的值求得SR图像中 ( i , j ) (i,j) (i,j)位置的像素值。up-scale formulate如下:

I S R ( i , j ) = Φ ( F L R ( i ′ , j ′ ) , W ( i , j ) ) I^{SR}(i,j)=\Phi(F^{LR}(i^{'}, j^{'}), W(i,j)) ISR(i,j)=Φ(FLR(i,j),W(i,j))

其中, Φ ( ⋅ ) \Phi(\cdot) Φ()代表feature mapping function用来计算pixel value。 W ( i , j ) W(i,j) W(i,j)代表计算SR中像素点 ( i , j ) (i,j) (i,j)时的卷积核。

由于SR图像中的每个像素点都与卷积核有关,对于不同的尺度因子 r r r,卷积核的weights都不相同,为了实现任意尺度的超分,本文提出了基于尺度因子和坐标的Meta-Upscale Module来动态预测weights W ( i , j ) W(i,j) W(i,j)。Meta-Upscale Module由三个重要的模块组成:Location Projection, Weights Prediction以及Feature Mapping

Location Projection

对于SR图像中的每个像素点 ( i , j ) (i,j) (i,j),均需找到 F L R F^{LR} FLR中的一个像素点 ( i ′ , j ′ ) (i^{'},j^{'}) (i,j)与之相对应。
( i ′ , j ′ ) = T ( i , j ) = ( ⌊ i r ⌋ , ⌊ j r ⌋ ) (i^{'},j^{'})=T(i,j)=(\lfloor \frac{i}{r} \rfloor, \lfloor \frac{j}{r} \rfloor) (i,j)=T(i,j)=(ri,rj)

其中, T T T是transformation function, ⌊ ⌋ \lfloor \rfloor 是向下取整函数。

The schematic diagram for how to upscale the feature map with the non-integer scale factor r=1.5. Here we only show the one-dimensional case for simplify.

如上图所示,当尺度 r = 2 r=2 r=2时, F L R F^{LR} FLR中的每个像素点 ( i ′ , j ′ ) (i^{'},j^{'}) (i,j)决定SR图像中的两个点,当尺度尺度 r r r为非整数时,如尺度 r = 1.5 r=1.5 r=1.5时, F L R F^{LR} FLR中的有些像素点决定SR图像中的两个点,有些决定SR图像中的一个点。

Weights Prediction

对于传统的upsale module,不同的尺度因子都有与之对应的、从训练集中学到的卷积核 W W W。但是,本文的Meta-Upscale Module利用神经网络来预测weights,公式如下:
W ( i , j ) = φ ( v i j ; θ ) W(i,j)=\varphi(v_{ij};\theta) W(i,j)=φ(vij;θ)
其中, W ( i , j ) W(i,j) W(i,j)为SR中像素点 ( i , j ) (i,j) (i,j)卷积核, φ ( ⋅ ) \varphi(\cdot) φ()时weight prediction network, v i j v_{ij} vij是网络的输入,与像素点 ( i , j ) (i,j) (i,j)有关, θ \theta θ是weight prediction network的参数。
v i j = ( i r − ⌊ i r ⌋ , j r − ⌊ j r ⌋ ) v_{ij}=(\frac{i}{r}-\lfloor \frac{i}{r}\rfloor,\frac{j}{r}-\lfloor \frac{j}{r}\rfloor) vij=(riri,rjrj)
为了同时训练不同尺度的超分网络,最好将尺度因子加入到 v i j v_{ij} vij中。理由:如果你想对一张图像做2倍和4倍超分,假设分别用 I 2 S R I_2^{SR} I2SR I 4 S R I_4^{SR} I4SR表示超分图像,由于 I 2 S R I_2^{SR} I2SR中的像素点 ( i , j ) (i,j) (i,j) I 4 S R I_4^{SR} I4SR中像素点 ( 2 i , 2 j ) (2i,2j) (2i,2j)对weight prediction network的输入相等:
v i j = ( i 2 − ⌊ i 2 ⌋ , j 2 − ⌊ j 2 ⌋ ) = ( 2 i 4 − ⌊ 2 i 4 ⌋ , 2 j 4 − ⌊ 2 j 4 ⌋ ) = v 2 i 2 j v_{ij}=(\frac{i}{2}-\lfloor \frac{i}{2}\rfloor,\frac{j}{2}-\lfloor \frac{j}{2}\rfloor)=(\frac{2i}{4}-\lfloor \frac{2i}{4}\rfloor,\frac{2j}{4}-\lfloor \frac{2j}{4}\rfloor)=v_{2i2j} vij=(2i2i,2j2j)=(42i42i,42j42j)=v2i2j
从而使得weight prediction network预测的卷积核相同(这意味着 I 2 S R I_2^{SR} I2SR I 4 S R I_4^{SR} I4SR的子图),进而严重影响最后超分的性能,因此,将尺度因子加入到 v i j v_{ij} vij中。

v i j = ( i r − ⌊ i r ⌋ , j r − ⌊ j r ⌋ , 1 r ) v_{ij}=(\frac{i}{r}-\lfloor \frac{i}{r}\rfloor,\frac{j}{r}-\lfloor \frac{j}{r}\rfloor, \frac{1}{r}) vij=(riri,rjrj,r1)

Feature Mapping

在利用Feature Learning Module得到 F L R F^{LR} FLR、利用weight prediction network得到卷积核后,要做的最后一件事情就是mapping feature to the value of the pixel on the SR image.公式如下:
Φ ( F L R ( i ′ , j ′ ) , W ( i , j ) ) = F L R ( i ′ , j ′ ) ⋅ W ( i , j ) \Phi(F^{LR}(i^{'},j^{'}),W(i,j))=F^{LR}(i^{'},j^{'})\cdot W(i,j) Φ(FLR(i,j),W(i,j))=FLR(i,j)W(i,j)

本文提出的Meta-Upscale Module流程如下图所示:

Meta Upscale Module详细过程:

  1. 根据尺度因子 r r r找到 I S R I^{SR} ISR中的像素点 ( i , j ) (i,j) (i,j)在低分图像 F L R F^{LR} FLR中的对应点 ( i ′ , j ′ ) = ( i r − ⌊ i r ⌋ , j r − ⌊ j r ⌋ ) (i^{'},j^{'})=(\frac{i}{r}-\lfloor \frac{i}{r}\rfloor,\frac{j}{r}-\lfloor \frac{j}{r}\rfloor) (i,j)=(riri,rjrj)
  2. 求得weight prediction network的输入向量(每个点对应3个数,横纵坐标的增量以及尺度因子, I S R I^{SR} ISR中共有 H × W H\times W H×W个像素点,因此共有 H × W × 3 H\times W\times 3 H×W×3个数,如图1所示) v i j = ( i r − ⌊ i r ⌋ , j r − ⌊ j r ⌋ , 1 r ) v_{ij}=(\frac{i}{r}-\lfloor \frac{i}{r}\rfloor,\frac{j}{r}-\lfloor \frac{j}{r}\rfloor, \frac{1}{r}) vij=(riri,rjrj,r1),网络输出 H × W H\times W H×W个大小为 k × k × i n C × o u t C k\times k\times inC\times outC k×k×inC×outC的卷积核。
  3. F L R F^{LR} FLR的大小为 N × i n H × i n W × i n C N\times inH\times inW\times inC N×inH×inW×inC,对于 I S R I^{SR} ISR中的像素点 ( i , j ) (i,j) (i,j), 找到与之对应的 F L R F^{LR} FLR中的像素点 ( i ′ , j ′ ) (i^{'},j^{'}) (i,j)以及以 v i j v_{ij} vij为输入的weight prediction network预测的卷积核 W ( i , j ) W(i,j) W(i,j)(尺寸为 k × k × i n H × i n W k\times k\times inH\times inW k×k×inH×inW)
  4. F L R F^{LR} FLR中以像素点 ( i ′ , j ′ ) (i^{'},j^{'}) (i,j)为中心的 k × k k\times k k×k的区域与 W ( i , j ) W(i,j) W(i,j)做卷积,最终得到 I S R I^{SR} ISR中的像素点 ( i , j ) (i,j) (i,j)

结果


在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值