趣味算法-03-跟着作者读《趣味算法(第2版)》-算法之美

14天阅读挑战赛

努力是为了不平庸算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!

系列博客:

趣味算法-01-跟着作者读《趣味算法(第2版)》上
趣味算法-02-跟着作者读《趣味算法(第2版)》下
趣味算法-03-跟着作者读《趣味算法(第2版)》-算法之美
趣味算法-04-跟着作者读《趣味算法(第2版)》-贪心算法
本文是系列博客的第3篇,是听了陈老师的报告后的记录,主要包括如何学习算法。

第1章 算法之美

1.1 想象算法的美

说到算法,我们想到的是什么,无论你想到的是什么,我希望你想到的是躺在法国普罗旺斯小镇的长椅上,呷(xia)一口红酒,闭上眼睛,体会舌尖上的美味,感受鼻腔中满溢的薰衣草的芳香…
在这里插入图片描述

1.2 算法特点

写一个算法,求如下序列之和:
− 1 , 1 , − 1 , 1 , . . . , ( − 1 ) n -1,1,-1,1,...,(-1)^n 1,1,1,1,...,(1)n
常见的算法就是写一个while循环,然后依次相加即可,这种方式可以求得结果,但需要计算n次:

arr = [-1,1,-1,1,-1]
arr_sum = 0
for i in range(1,len(arr)+1):
    arr_sum += pow(-1,i)
    print(arr_sum)

如果采取-1+1 = 0 ,如果长度为偶数,结果为0,否则为-1:

arr = [-1,1,-1,1,-1]
arr_sum = 0
arr_len = len(arr)
if (arr_len % 2==0):
    print(0)
else:
    print(-1)

第一种算法需要执行n次,第二种算法需要执行1次,后者就是数学家高斯所使用的算法
需要说明的是,笨方法也是算法高斯使用的方法也是算法
算法具有如下特性

  1. 有穷性:算法是若干质量组成的又穷序列,总是会执行若干次后结束
  2. 确定性:每条语句都有明确的含义,无歧义
  3. 可行性:算法再当前环境条件下可以通过有限次运算来实现
  4. 输入/输出:有0或多个输入以及1个或多个输出

好的算法的标准:

  1. 正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期。
  2. 易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。
  3. 健壮性:算法对非法数据及操作有较好的反应和处理。例如,在学生信息管理系统中登记学生年龄时,若将21岁误输入为210岁,则系统应该有错误提示。
  4. 高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。
  5. 低存储性:低存储性是指算法所需的存储空间小。对于像手机、平板电脑这样的嵌入式设备,算法如果占用空间过大,则无法运行。算法占用的空间大小被称为空间复杂度。

正确性,易读性,健壮性是在我们完成了算法的基础上,适当提高下工程标准即可。但时间复杂度和空间复杂度的优化就有一定的难度了。

1.3 算法的时间和空间复杂性

时间复杂度是按照计算机支持的次数来衡量的,如上面的例子中,笨方法中,对于n条数据,需要执行n次循环才能获得结果,其时间复杂度为 O ( n ) O(n) O(n),高斯所用的方法中,对于n条数据,需要执行1次,即复杂度为常数。
O O O符号表示法中,时间复杂度的公式是: T ( n ) = O ( f ( n ) ) T(n) = O( f(n) ) T(n)=O(f(n)),其中 f ( n ) f(n) f(n) 表示每行代码执行次数之和,而 O O O 表示正比例关系,这个公式的全称是:算法的渐进时间复杂度。常见的时间复杂度包括:

常数阶 O ( 1 ) O\left(1\right) O(1)
对数阶 O ( l o g N ) O\left(logN\right) O(logN)
线性阶 O ( n ) O\left(n\right) O(n)
线性对数阶 O ( n log ⁡ n ) O\left(n \log n\right) O(nlogn)
平方阶 O ( n 2 ) O\left(n^{2}\right) O(n2)
立方阶 O ( n 3 ) O\left(n^{3}\right) O(n3)
K次方阶 O ( n k ) O\left(n^{k}\right) O(nk)
指数阶 O ( 2 n ) O\left(2^{n}\right) O(2n)

上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。

针对算法时间复杂度,还可以分为
常数阶: O ( 1 ) O\left(1\right) O(1) 可以是2,20,100
多项式阶: O ( n ) O\left(n\right) O(n) O ( n 2 ) O\left(n^{2}\right) O(n2) O ( n 3 ) O\left(n^{3}\right) O(n3) 比较常见
指数阶: O ( 2 n ) O\left(2^{n}\right) O(2n) O ( n ! ) O\left(n!\right) O(n!) O ( n n ) O\left(n^{n}\right) O(nn) 要避免指数阶!!
对数阶: O ( log ⁡ n ) O\left(\log n\right) O(logn) O ( n log ⁡ n ) O\left(n\log n\right) O(nlogn) 效率较高

随n的增长,时间复杂度增加的关系如下:

O ( 1 ) < O ( log ⁡ n ) < O ( n ) < O ( n log ⁡ n ) < O ( n 2 ) < O ( n 3 ) < O ( 2 n ) < O ( n ! ) < O ( n n ) O\left(1\right) < O\left(\log n\right) < O\left(n\right) < O\left(n\log n\right) < O\left(n^{2}\right) < O\left(n^{3}\right) < O\left(2^{n}\right) < O\left(n!\right) < O\left(n^{n}\right) O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n3)<O(2n)<O(n!)<O(nn)

空间复杂度:算法在运行过程中占用的空间大小,包括:

  1. 输入输出数据
  2. 算法本身
  3. 额外需要的辅助空间

输入/输出数据占用的空间是必须的,算法本身占用的空间可以通过精简算法来缩减,但缩减的量很有限。算法在运行时所使用的辅助变量占用的空间(辅助空间)才是衡量算法空间复杂度的关键因素。

1.4 神奇的兔子序列

假设第1个月有1对初生的兔子,第2个月进入成熟期,第3个月开始生育兔子,而1对成熟的免子每月会生1对兔子,兔子永不死去.那么,由1对初生的免子开始, 12个月后会有多少对兔子呢?
兔子数列即斐波那契数列,它的发明者是意大利数学家莱奥纳尔多斐波那契(Leonardo Fibonacci, 1170-1250) 。1202年,莱奥纳尔多撰写了《算盘全书》(Liber Abaci),该书是一部较全面的初等数学著作。书中系统地介绍了印度一阿拉伯数码及其演算法则,以及中国的“盈不足术”;此外还引入了负数,并研究了一些简单的一次同余式组。

提示:简单描述OR总结所学习的算法知识点,可列举文字/图片/视频教程

算法题目来源

《趣味算法第2版》斐波那契数列 问题

算法题目描述

假设第1个月有1对初生的兔子,第2个月进入成熟期,第3个月开始生育兔子,而1对成熟的免子每月会生1对兔子,兔子永不死去.那么,由1对初生的免子开始, 12个月后会有多少对兔子呢?
兔子数列即斐波那契数列,它的发明者是意大利数学家莱奥纳尔多斐波那契(Leonardo Fibonacci, 1170-1250) 。1202年,莱奥纳尔多撰写了《算盘全书》(Liber Abaci),该书是一部较全面的初等数学著作。书中系统地介绍了印度一阿拉伯数码及其演算法则,以及中国的“盈不足术”;此外还引入了负数,并研究了一些简单的一次同余式组。

做题思路

把上面的数列用图展示:
在这里插入图片描述
这个数列的特点是:
在这里插入图片描述

模板代码

def fib(n):
    if (n==1 or n ==2):
        return 1
    return fib(n-1) + fib(n-2)

x = fib(3)
print(x)

做题过程中遇到的bug及解决方案

目前实现了算法,但没有考虑时间复杂度,如何快速的找到数列的内在规律,并结合算法设计,需要日积月累的努力,切不可大意。

时间复杂度计算

针对斐波那契数列,上面模板中时间复杂度 T ( n ) T\left(n\right) T(n)为:
在这里插入图片描述

算法改进

def fib2(n):
    if n <2 :
        return 1
    list1 = [1 for x in range(0,n)]
    for i in range(2,n):
        list1[i] = list1[i-1] + list1[i-2]
    print(list1)
    return list1[n-1]

x = fib2(3)
print(x)

这种算法中,时间复杂度从指数阶 降到了 O ( n ) O(n) O(n),效率提升了很多

题外话:
斐波那契数列的最后两项比值接近于0.618黄金分割

1÷1 = 1
1÷2 = 0.5
2÷3 = 0.66
3÷5 = 0.6
5÷8 = 0.624

55÷89 = 0.6117977

144÷233 = 0.618025

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT从业者张某某

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值