在时间序列预测中,传统的回归模型往往只能给出一个精确的预测值。然而,随着应用场景的复杂化,往往需要预测的不仅是一个点估计,而是预测结果的分位数区间,以便于量化预测的可靠性。QRCNN-BiLSTM(Quantile Regression Convolutional Neural Network + Bi-directional LSTM)结合了卷积神经网络(CNN)提取特征的能力和双向长短期记忆网络(BiLSTM)处理时间序列数据的优势,同时通过分位数回归(QR)方法来实现时间序列区间预测。
本文将展示如何使用MATLAB实现QRCNN-BiLSTM模型,进行分位数回归时间序列区间预测。我们将逐步讲解项目的实现,包括数据处理、模型设计、训练和预测等步骤。
1. 项目概述
QRCNN-BiLSTM模型:
-
卷积神经网络(CNN):用于提取时间序列数据中的局部特征。
-
双向长短期记忆网络(BiLSTM):通过正向和反向LSTM处理时序数据,能够捕获时间序列中的长期依赖关系。
-
分位数回归(QR):用于预测数据的分位数区间,使得模型能够输出一个区间而不是单一的预测值。
我们将在MATLAB中使用这些技术来构建一个模型,并应用于时间序列区间预测任务。
2. 数据准备与预处理
首先