生成式AI作为近年来技术发展的前沿领域,在多个行业得到了广泛应用。通过深度学习和大规模数据的结合,生成式AI能够完成从文本生成、图像创作到数据预测等多种任务。然而,在应用落地的过程中,统计机器学习的局限性、因果推理的瓶颈、以及智能代理(Agent)在不同场景中的应用依然面临着众多挑战。本文将结合DeepSeek案例,探讨这些挑战并分析生成式AI在客服和研发中的实际应用。
1. 生成式AI的核心概念与应用
生成式AI指的是能够生成新数据的模型,其与传统的判别式AI不同,生成式AI的目的是在已知数据的基础上,生成有意义的、合理的输出。例如,GPT系列模型能够生成连贯的自然语言文本,DeepDream能够生成艺术风格的图像,而DeepSeek则是一种结合生成式AI与因果推理的案例,力图将AI应用于更加复杂的、需要因果关系建模的实际场景。
生成式AI的典型应用包括:
- 文本生成:如GPT、BERT等自然语言处理模型可以自动撰写文章、生成对话。
- 图像生成:如GANs(生成对抗网络)可以创造全新的艺术作品或从文本描述生成图像。