Anaconda Pytorch 安装方法

本文详细描述了如何在Windows和Linux系统上使用Anaconda正确安装PyTorchGPU版本,包括设置镜像源、创建Python虚拟环境、安装CUDA驱动以及处理conda版本匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

有一段时间比较喜欢用pytorch,主要是因为pytorch各个版本的安装命令写的很清楚,配合anaconda使用也不需要特别关心电脑当前装的显卡驱动版本、cuda版本等(保持最新就行)

但是偶尔会遇到

import torch
print(torch.__version__)
print(torch.cuda.is_available())

提示False的问题

查了资料后发现是conda的问题,虽然安装命令指定要装GPU版本,但是conda在源中没有找到完全匹配的python、pytorch、cudatoolkit、cudnn包,就会找个CPU版本的包安装

解决方法

1. 在清华源(等)镜像网站,查询python与pytorch对应版本

Windows 64位清华源地址:

https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

Linux 64位清华源地址:

https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/

假设需要安装的pytorch版本为:1.10.1
使用ctrl+f搜索关键字pytorch-1.10.1,结果如下:

pytorch-1.10.1-py3.6_cpu_0.tar.bz2
pytorch-1.10.1-py3.6_cuda10.2_cudnn7_0.tar.bz2
pytorch-1.10.1-py3.6_cuda11.1_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.6_cuda11.3_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.7_cpu_0.tar.bz2
pytorch-1.10.1-py3.7_cuda10.2_cudnn7_0.tar.bz2
pytorch-1.10.1-py3.7_cuda11.1_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.7_cuda11.3_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.8_cpu_0.tar.bz2
pytorch-1.10.1-py3.8_cuda10.2_cudnn7_0.tar.bz2
pytorch-1.10.1-py3.8_cuda11.1_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.8_cuda11.3_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.9_cpu_0.tar.bz2 1
pytorch-1.10.1-py3.9_cuda10.2_cudnn7_0.tar.bz2
pytorch-1.10.1-py3.9_cuda11.1_cudnn8_0.tar.bz2
pytorch-1.10.1-py3.9_cuda11.3_cudnn8_0.tar.bz2

根据pyx.x可知,可选的python版本有:3.63.73.83.9

2. 使用anaconda创建虚拟环境,并指定python版本

假设虚拟环境的名字为:pytorch101_gpu,python版本为:3.7

conda create -n pytorch101_gpu python=3.7

3. 在虚拟环境中安装cuda驱动

进入虚拟环境:

conda activate pytorch101_gpu 

换清华源:

conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

首先需要手动安装cudatoolkitcudnn
假设最终要安装的pytorch版本为pytorch-1.10.1-py3.7_cuda11.3_cudnn8_0.tar.bz2
可以确定cudatoolkit的版本为11.3cudnn版本为8.0
假设安装的平台是Windows 64bit,则清华源地址为:

http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

安装命令如下:

conda install cudatoolkit=11.3 -c http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
conda install cudnn=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

注意:这里的cudatoolkit版本与机器实际安装的cuda版本无关

4. 安装pytorch

打开pytorch官网,查询pytorch版本与torchvision、torchaudio的对应关系:

https://pytorch.org/get-started/previous-versions/

查询到在Windows环境下,使用anaconda安装pytorch1.10.1的命令如下

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

可知pytorch=1.10.1对应torchvision=0.11.0,torchaudio=0.10.0
具体的安装命令如下:

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/

参考

conda安装GPU版pytorch,结果却是cpu版本[找到问题根源,从容解决

### 如何加速 AnacondaPyTorch安装过程 为了提高在 Anaconda安装 PyTorch 的效率,可以采取多种措施来优化下载和配置的速度。 #### 使用国内镜像源 通过设置 Conda 配置中的默认通道为中国科学技术大学或其他国内镜像站点,能够显著减少网络延迟并加快包的获取速度。具体操作如下: ```bash conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/pytorch/ conda config --set show_channel_urls yes ``` 这会将 pytorch 官方仓库替换为中科大镜像站[^1]。 #### 创建特定环境而非直接修改 base 环境 创建一个新的 conda 虚拟环境中专门用于机器学习项目,而不是更改基础 `base` 环境。这样不仅有助于隔离依赖关系冲突,还能让每次重新构建变得更为快捷简便。 ```bash conda create -n ml_env python=3.9 conda activate ml_env ``` 接着,在激活的新环境中继续执行 PyTorch 及其相关库的安装命令。 #### 利用 Miniconda 替代完整的 Anaconda 发行版 Miniconda 是一个轻量级版本的 Anaconda,默认只包含了 Pythonconda 工具本身;相比起全功能 Anaconda 来说体积更小、启动更快捷。对于只需要管理软件包而不需要预装大量科学计算工具集的情况而言非常适合。 完成上述调整之后,就可以按照常规方式安装 PyTorch 并验证 GPU 加速是否正常工作: ```python import torch print(torch.cuda.is_available()) ``` 如果返回 True,则表示成功启用了 CUDA 支持[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值