梅森素数

如果一个数字的所有真因子之和等于自身,则称它为“完全数”或“完美数” 例如:6 = 1 + 2 + 3,28 = 1 + 2 + 4 + 7 + 14早在公元前300多年,欧几里得就给出了判定完全数的定理: 若 2^n - 1 是素数,则 2^(n-1) * (2^n - 1) 是完全数。 其中 ^ 表示“乘方”运算,乘方的优先级比四则运算高,例如:2^3 = 8, 2 * 2^3 = 16, 2^3-1 = 7 但人们很快发现,当n很大时,判定一个大数是否为素数到今天也依然是个难题。 因为法国数学家梅森的猜想,我们习惯上把形如:2^n - 1 的素数称为:梅森素数。 截止2013年2月,一共只找到了48个梅森素数。 新近找到的梅森素数太大,以至于难于用一般的编程思路窥其全貌,所以我们把任务的难度降低一点:1963年,美国伊利诺伊大学为了纪念他们找到的第23个梅森素数 n=11213,在每个寄出的信封上都印上了“2^11213-1 是素数”的字样。 2^11213 - 1 这个数字已经很大(有3000多位),请你编程求出这个素数的十进制表示的最后100位。(前面都是废话)答案是一个长度为100的数字串,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。

Java的大数运算

import java.math.BigInteger;
import java.util.*;
public class Main{
	
	public static void main(String[] args) {
		BigInteger x = BigInteger.valueOf(2).pow(11213).subtract(BigInteger.ONE);
		String s = x.toString();
		int len = s.length();
		String ans = s.substring(len-100,len);
		System.out.println(ans.length());
		System.out.println(ans);
		
		
		
	}
}
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页