Halcon 缺陷检测原理及应用

摘要: 本文深入探讨了 Halcon 在缺陷检测领域的原理与应用。首先介绍了 Halcon 软件的基本概况及其在机器视觉领域的重要地位。随后详细阐述了缺陷检测的基本原理,包括图像预处理、特征提取与分析、缺陷判断等关键环节。接着通过多个实际应用案例,如工业零部件表面缺陷检测、电子电路板缺陷检测、包装印刷品缺陷检测等,展示了 Halcon 在不同场景下的应用优势与具体实现方法。同时,对 Halcon 缺陷检测应用中的参数优化、算法选择等技术要点进行了讨论,并对其未来发展趋势进行了展望,旨在为相关领域的工程技术人员和研究人员提供全面深入的参考,推动 Halcon 在缺陷检测领域的进一步应用与发展。

一、引言

在现代工业生产和质量控制过程中,缺陷检测是确保产品质量、提高生产效率的关键环节。随着机器视觉技术的不断发展,Halcon 作为一款功能强大、应用广泛的机器视觉软件库,在缺陷检测领域发挥着极为重要的作用。它提供了丰富的图像处理算法、高效的开发工具以及便捷的编程接口,能够快速、准确地识别和检测产品表面的各种缺陷,为企业实现自动化、智能化的生产检测提供了有力支持。

二、Halcon 概述

Halcon 是德国 MVTec 公司开发的一套完善的标准机器视觉算法包,涵盖了众多的图像处理、分析和识别功能。它具有以下显著特点:

  1. 丰富的算法库:包含了大量先进的图像处理算法,如滤波、边缘检测、形态学运算、特征提取、目标识别等,可以应对各种复杂的视觉检测任务。
  2. 高效的执行效率:经过高度优化,能够在较短的时间内处理大规模的图像数据,满足工业生产线上高速、实时检测的要求。
  3. 跨平台支持:可在多种操作系统(如 Windows、Linux 等)和硬件平台上运行,具有良好的兼容性和扩展性。
  4. 易于开发和集成:提供了友好的编程接口(如 C++、C#、Python 等),方便开发人员快速构建视觉检测应用程序,并能够与其他自动化设备和控制系统进行无缝集成。

三、缺陷检测原理

(一)图像采集

在 Halcon 缺陷检测系统中,首先需要通过工业相机等图像采集设备获取被检测物体的图像。图像采集过程中需要考虑相机的分辨率、帧率、照明条件等因素,以确保采集到的图像清晰、准确地反映物体的表面特征。合适的照明系统能够突出物体的缺陷特征,减少噪声干扰,提高检测的准确性和可靠性。

(二)图像预处理

采集到的原始图像往往包含噪声、光照不均匀等问题,需要进行预处理。

  1. 滤波:常用的滤波方法包括高斯滤波、中值滤波等。高斯滤波可以有效地去除高斯噪声,通过对图像中的每个像素点及其邻域进行加权平均运算,使图像变得更加平滑。中值滤波则对椒盐噪声有较好的抑制作用,它将像素邻域内的灰度值进行排序,取中间值作为该像素点的新灰度值,从而保持图像的边缘信息。
  2. 灰度校正:当图像存在光照不均匀现象时,可采用灰度校正算法来调整图像的灰度分布。例如,基于图像灰度直方图的均衡化方法,通过拉伸或压缩图像的灰度范围,使图像在整个灰度区间内的分布更加均匀,增强图像的对比度,以便更好地提取缺陷特征。

(三)特征提取与分析

  1. 边缘检测:边缘是图像中灰度值发生急剧变化的区域,往往与物体的轮廓和缺陷边界相关。Halcon 提供了多种边缘检测算子,如 Sobel 算子、Canny 算子等。Sobel 算子通过计算图像在水平和垂直方向上的灰度梯度来确定边缘位置,Canny 算子则在边缘检测的基础上,采用双阈值算法对边缘进行细化和连接,得到更精确、连续的边缘轮廓。
  2. 纹理分析:对于一些具有特定纹理特征的物体,如纺织品、木材等,纹理分析是缺陷检测的重要手段。Halcon 可以通过计算图像的灰度共生矩阵、局部二值模式等纹理特征参数,来描述图像的纹理信息。通过比较正常区域和缺陷区域的纹理特征差异,判断是否存在缺陷。例如,在纺织品缺陷检测中,正常的纺织品具有规则的纹理结构,当出现破洞、污渍等缺陷时,纹理特征会发生明显变化。
  3. 形状特征提取:物体的形状特征对于缺陷检测也具有重要意义。Halcon 能够提取物体的面积、周长、圆形度、矩形度等形状参数。在工业零部件检测中,通过对比标准零部件的形状参数与实际检测图像中物体的形状参数,可以判断零部件是否存在变形、缺角等缺陷。例如,对于圆形零部件,可以计算其圆形度,如果圆形度偏离标准值较大,则可能存在缺陷。

(四)缺陷判断

在提取了图像的各种特征后,需要根据预设的缺陷判断标准来确定是否存在缺陷。这通常涉及到设定阈值、建立模型等方法。

  1. 阈值法:对于一些简单的缺陷检测任务,如表面划痕检测,可以根据划痕与正常表面在灰度值、边缘强度等特征上的差异,设定相应的阈值。当图像中某区域的特征值超过阈值时,则判定为缺陷区域。例如,在金属表面划痕检测中,划痕区域的灰度值通常较低,通过设定一个较低的灰度阈值,可以将划痕区域提取出来。
  2. 模板匹配法:对于具有固定形状和特征的物体,可以预先创建标准模板图像。在检测过程中,将实际图像与模板图像进行匹配,通过计算匹配度来判断是否存在缺陷。如果匹配度低于设定的阈值,则认为存在缺陷。例如,在电子电路板检测中,可以创建无缺陷的电路板模板,通过模板匹配检测电路板上的元器件是否缺失、偏移或损坏。
  3. 机器学习与深度学习方法:随着人工智能技术的发展,机器学习和深度学习在缺陷检测中的应用越来越广泛。在 Halcon 中,可以利用支持向量机、神经网络等机器学习算法对大量的正常和缺陷图像样本进行训练,建立缺陷分类模型。深度学习算法如卷积神经网络(CNN)则可以自动学习图像的特征表示,具有更强的缺陷识别能力。通过将待检测图像输入训练好的模型,模型可以输出图像中是否存在缺陷以及缺陷的类型、位置等信息。

四、Halcon 缺陷检测应用案例

(一)工业零部件表面缺陷检测

在汽车制造、机械加工等行业,工业零部件的表面质量直接影响产品的性能和安全性。以发动机缸体表面缺陷检测为例,由于缸体表面具有复杂的纹理和形状,传统的人工检测方法效率低下且容易出错。采用 Halcon 进行缺陷检测时,首先通过工业相机获取缸体表面的图像,然后进行图像预处理,包括灰度校正和高斯滤波,以去除光照不均匀和噪声干扰。接着,使用边缘检测算子提取缸体表面的轮廓信息,通过形状分析判断缸体的外形是否符合标准。同时,利用纹理分析算法对缸体表面的纹理特征进行提取和比较,检测是否存在砂眼、划痕等缺陷。通过设定合理的阈值和缺陷判断规则,能够准确地识别出缸体表面的缺陷,并将缺陷信息及时反馈给生产控制系统,以便对不合格产品进行筛选和处理。

(二)电子电路板缺陷检测

电子电路板在电子产品中起着至关重要的作用,其质量直接关系到产品的性能和可靠性。在电子电路板的生产过程中,可能会出现元器件缺失、焊接不良、线路短路或断路等缺陷。Halcon 可以通过模板匹配和特征分析相结合的方法进行缺陷检测。首先创建标准的电子电路板模板图像,在检测时将实际电路板图像与模板进行匹配,快速定位元器件的位置和形状。然后,通过对焊接点的灰度、形状和纹理特征进行分析,判断焊接质量是否合格。例如,正常的焊接点应该具有规则的圆形或椭圆形形状,且灰度值均匀。如果焊接点出现变形、灰度不均匀或与周围线路连接异常等情况,则判定为缺陷。此外,还可以利用 Halcon 的连通域分析功能检测线路的完整性,判断是否存在短路或断路现象。通过 Halcon 缺陷检测系统,可以实现对电子电路板的快速、高精度检测,提高生产效率和产品质量。

(三)包装印刷品缺陷检测

在包装印刷行业,印刷品的质量要求越来越高,如食品包装、药品包装等。常见的包装印刷品缺陷包括印刷图案模糊、颜色偏差、漏印、重印等。Halcon 可以通过对印刷品图像的颜色分析、图案识别和纹理检测来实现缺陷检测。首先,对采集到的印刷品图像进行颜色空间转换,将其转换到更适合颜色分析的空间,如 CIELab 空间。然后,通过计算图像中不同颜色区域的颜色值分布,与标准颜色值进行比较,判断是否存在颜色偏差。对于印刷图案的检测,可以采用模板匹配或基于特征的图案识别方法,确保印刷图案的完整性和准确性。同时,利用纹理分析检测印刷品表面的平整度和均匀性,判断是否存在漏印或重印等缺陷。例如,在食品包装印刷品检测中,如果包装上的生产日期、保质期等文字信息印刷不清晰或缺失,通过 Halcon 的字符识别和缺陷检测功能可以及时发现并剔除不合格产品,保障消费者的权益和企业的品牌形象。

五、Halcon 缺陷检测应用中的技术要点

(一)参数优化

Halcon 中的各种图像处理算法都有相应的参数,如滤波算法中的滤波器尺寸、边缘检测算子中的阈值等。这些参数的选择直接影响到缺陷检测的效果和效率。在实际应用中,需要根据被检测物体的特点和检测要求,通过大量的实验和分析来优化这些参数。例如,在高斯滤波中,滤波器尺寸过小可能无法有效去除噪声,而尺寸过大则可能会模糊图像的边缘信息。因此,需要在噪声抑制和边缘保持之间找到一个平衡点,选择合适的滤波器尺寸。可以采用交叉验证等方法,对不同参数组合下的检测结果进行评估,最终确定最优的参数设置。

(二)算法选择

针对不同类型的缺陷和被检测物体,需要选择合适的图像处理算法。例如,对于边缘清晰、对比度高的物体缺陷检测,简单的边缘检测算子如 Sobel 算子可能就能够满足要求;而对于纹理复杂的物体,如纺织品,则需要采用纹理分析算法如灰度共生矩阵或局部二值模式。在实际应用中,有时还需要将多种算法结合起来使用,以提高缺陷检测的准确性和可靠性。例如,在工业零部件表面缺陷检测中,可以先使用边缘检测算法提取零部件的轮廓,然后再利用纹理分析算法检测轮廓内的表面纹理缺陷,综合判断零部件的质量状况。

(三)系统集成与优化

Halcon 缺陷检测系统通常需要与其他自动化设备和控制系统进行集成,如工业机器人、PLC(可编程逻辑控制器)等。在集成过程中,需要考虑数据传输的稳定性、实时性和兼容性等问题。例如,确保相机采集到的图像数据能够快速、准确地传输到 Halcon 软件中进行处理,处理结果能够及时反馈给 PLC 等控制系统,以便对生产设备进行相应的控制操作。同时,还需要对整个系统进行优化,包括硬件设备的选型和配置、软件算法的优化等,以提高系统的整体性能和检测效率。例如,选择高性能的工业相机和计算机硬件,采用多线程编程技术提高 Halcon 软件的运行效率等。

六、Halcon 缺陷检测的未来发展趋势

(一)深度学习技术的深入应用

随着深度学习技术的不断发展,其在 Halcon 缺陷检测中的应用将更加深入和广泛。深度学习算法能够自动学习图像的深层次特征,对于复杂的缺陷类型和多变的检测环境具有更强的适应性。未来,将进一步优化和改进基于深度学习的缺陷检测模型,提高模型的训练速度和检测精度,降低对大量标注样本的依赖。同时,将探索深度学习与传统图像处理算法的融合应用,充分发挥两者的优势,实现更高效、准确的缺陷检测。

(二)多传感器融合

为了提高缺陷检测的全面性和准确性,多传感器融合技术将成为未来的发展趋势。除了传统的视觉传感器(工业相机)外,将结合其他传感器如激光传感器、红外传感器等,获取被检测物体的多维度信息。例如,激光传感器可以用于测量物体的三维形状信息,红外传感器可以检测物体的温度分布。通过对多传感器数据的融合处理,可以更全面地了解物体的状态和特征,从而更准确地检测出各种类型的缺陷,尤其适用于一些对检测精度和可靠性要求极高的领域,如航空航天、高端装备制造等。

(三)与工业物联网(IIoT)的紧密结合

工业物联网的发展将推动 Halcon 缺陷检测系统与整个工业生产网络的深度融合。在 IIoT 环境下,Halcon 缺陷检测系统可以实时获取生产线上各种设备的运行数据、产品信息等,实现更智能化的缺陷检测和质量控制。例如,根据生产线上产品的批次信息、生产工艺参数等,自动调整缺陷检测的策略和参数,提高检测的针对性和有效性。同时,将缺陷检测结果及时反馈给生产管理系统,实现对生产过程的实时监控和优化,提高整个工业生产的效率和质量。

七、结论

Halcon 作为一款先进的机器视觉软件库,在缺陷检测领域具有卓越的性能和广泛的应用前景。通过深入理解其缺陷检测原理,包括图像采集、预处理、特征提取与分析、缺陷判断等环节,并结合实际应用案例中的具体实现方法,可以充分发挥 Halcon 在工业零部件、电子电路板、包装印刷品等多种领域的缺陷检测优势。在应用过程中,注重参数优化、算法选择和系统集成等技术要点,能够进一步提高缺陷检测的准确性和效率。展望未来,随着深度学习技术的深入应用、多传感器融合以及与工业物联网的紧密结合,Halcon 缺陷检测技术将不断创新和发展,为工业生产的自动化、智能化质量控制提供更加强有力的支持,推动各行业的产品质量和生产效率提升到新的高度。

以下是一个使用 Halcon 进行简单表面缺陷检测的示例代码,假设要检测的是一张有缺陷的平面物体图像(比如有划痕、孔洞等缺陷的金属板图像),基本思路是通过图像阈值分割等操作将缺陷区域提取出来,这里以灰度图像为例,你可以根据实际情况进行调整和拓展:

代码示例

* 关闭窗口并清除系统所有变量等
dev_close_window ()
dev_clear_window ()

* 读取图像(请替换为你实际的图像文件路径)
read_image (Image, 'your_image.jpg')
* 获取图像尺寸
get_image_size (Image, Width, Height)

* 打开一个适应图像尺寸的窗口
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
* 在窗口中显示原始图像
dev_display (Image)

* 将图像转为灰度图(如果读入的不是灰度图)
rgb1_to_gray (Image, GrayImage)

* 阈值分割,尝试提取缺陷区域(这里阈值是示例值,需根据实际图像调整)
threshold (GrayImage, Region, 100, 255)

* 形态学开运算,去除小的噪声区域(可调整结构元素尺寸)
opening_circle (Region, RegionOpening, 3.5)

* 连通域分析,获取各个独立的区域
connection (RegionOpening, ConnectedRegions)

* 选择面积大于一定阈值的区域作为可能的缺陷区域(面积阈值根据实际情况定)
select_shape (ConnectedRegions, DefectRegions, 'area', 'and', 50, 99999)

* 在窗口中用红色显示检测出的缺陷区域
dev_set_color ('red')
dev_display (DefectRegions)

代码解释

  1. 图像读取与窗口操作
    • 首先通过 dev_close_window 和 dev_clear_window 清理之前可能存在的窗口及相关显示内容,然后使用 read_image 读取指定路径下的图像文件(这里要将 'your_image.jpg' 替换成真实的文件名和路径)。接着通过 get_image_size 获取图像宽高,并根据其尺寸用 dev_open_window 打开一个合适的显示窗口,最后使用 dev_display 在窗口中展示原始图像。
  2. 灰度转换与阈值分割
    • 如果读入的是彩色图像(RGB 图像),使用 rgb1_to_gray 将其转换为灰度图方便后续处理。threshold 操作是根据设定的灰度阈值范围(示例中是 100 到 255 之间),将图像中处于该灰度区间的像素提取出来,形成一个区域,这个区域理论上包含了我们感兴趣的缺陷部分以及一些噪声等。
  3. 形态学处理
    • opening_circle 进行形态学开运算,其作用是以圆形结构元素(半径为 3.5,可按需调整)对前面分割得到的区域进行处理,目的是去除一些小的、孤立的噪声像素区域,同时保留相对较大且连贯的缺陷区域形状。
  4. 连通域分析与筛选
    • connection 对经过形态学处理后的区域进行连通域分析,将其拆分成一个个独立的连通区域,因为可能存在多个缺陷,每个缺陷区域就是一个连通域。然后 select_shape 基于形状特征(这里是根据面积特征)筛选出面积大于一定值(示例中是 50 像素以上,可根据实际缺陷大小调整)的区域作为最终认定的缺陷区域。
  5. 结果显示
    • 最后通过 dev_set_color 设置显示颜色为红色,再用 dev_display 将检测出的缺陷区域显示在之前打开的窗口中,这样就可以直观地看到图像中的缺陷位置和大致形状了。

<think>好的,我现在需要回答用户关于Halcon缺陷检测的问题。首先,我得回忆一下Halcon的基本信息。Halcon是由MVTec公司开发的机器视觉软件库,广泛应用于工业检测,包括缺陷检测。用户可能想知道它的原理、常用方法以及应用场景。 接下来,我需要确定用户的需求。他们可能是在工业制造领域工作,想了解如何用Halcon进行质量控制。或者是学生或研究人员,希望学习相关技术。因此,回答需要涵盖基础和实际应用,结构清晰,逐步解释。 首先,应该介绍Halcon的基本情况,比如它的开发商、用途和特点。然后,缺陷检测的常见应用场景,比如表面检测、OCR、3D检测等,这样用户能明白适用范围。 接下来,关键部分:Halcon缺陷检测的方法。这里需要分点说明,比如传统算法中的图像处理技术,如阈值分割、边缘检测、形态学操作,以及更高级的方法如Blob分析、模板匹配、频域分析。然后提到深度学习方法,因为Halcon也支持深度学习,比如卷积神经网络的应用。这部分需要具体举例,比如使用哪个函数或工具,但可能不需要太深入的技术细节,保持易懂。 然后,可能需要说明Halcon的优势,比如高效算法、丰富的工具库、支持深度学习和跨平台。这些点能帮助用户理解为什么选择Halcon。 接下来,应用流程,从图像采集到结果输出,分步骤说明。这部分需要逻辑清晰,让用户了解整个检测过程是如何进行的。 最后,实际案例,比如金属表面划痕检测,具体步骤和使用的函数,如read_image、threshold、connection等,这样用户能有一个具体的印象。不过,用户可能不需要代码细节,但简要提及函数名可以展示Halcon的实际操作。 需要注意使用中文,数学公式用$...$格式,比如阈值处理中的阈值公式。独立公式用$$...$$,但可能在这个回答中用到的数学公式不多,但如果有的话要正确应用。例如,形态学操作中的膨胀、腐蚀,可能需要用数学表达式,但不确定是否需要,所以可能可以省略,或者简单提及。 需要确保LaTeX语法正确,比如积分符号或方程的正确格式。但缺陷检测可能更多涉及图像处理算法,数学公式可能较少。不过像频域分析可能会涉及傅里叶变换,这时候需要用$$...$$,例如傅里叶变换的公式。但用户的问题可能不需要深入到数学细节,所以可能需要权衡,保持回答的实用性。 最后,检查结构是否清晰,是否覆盖了用户的需求,是否有不准确的地方。比如,是否混淆了HalconHALCON的拼写?正确应该是HALCON,但用户写的是halcon,可能在回答中使用正确的大小写。另外,确认提到的函数和工具是否存在,比如read_image、threshold确实是Halcon中的函数。 可能还需要补充一些实际应用的注意事项,比如光照条件、图像采集质量对检测结果的影响,或者Halcon在处理不同材料时的调整方法。但用户的问题可能更关注基础介绍,所以可以简要提到这些因素,但不过于深入。 总结回答的结构应该是: 1. Halcon简介 2. 应用场景 3. 常用方法(传统和深度学习) 4. 优势 5. 典型流程 6. 实例 7. 注意事项 这样用户能逐步了解Halcon缺陷检测中的作用和使用方法。同时,保持语言简洁,避免技术术语过多,必要时做解释,比如Blob分析是什么,形态学操作的作用等。但可能用户已有一定基础,所以可以适当使用术语,但简要说明。 现在需要将这些思考整理成结构化的回答,确保符合用户的要求,使用中文,正确格式的数学表达式,分步骤说明,并且真实可靠。需要检查是否有错误的信息,比如Halcon是否真的支持深度学习,答案是肯定的,所以这部分正确。同时,确保提到的函数名称正确,比如使用emphasize函数进行增强,或者使用其他函数如inspect_blister_package,可能实际例子中的函数需要准确,比如read_image是正确的。 最后,确保回答没有使用Markdown格式,段落清晰,使用自然的口语化中文,但不过于随意,保持专业性。</think>以下是关于**Halcon缺陷检测**的详细介绍,结构清晰,逐步展开: --- ### 1. **Halcon简介** Halcon(全称**HALCON**)是由德国MVTec公司开发的一款**高性能机器视觉软件库**,广泛应用于工业自动化中的图像处理缺陷检测。其核心优势包括: - **高效算法库**:涵盖传统图像处理与深度学习技术。 - **跨平台支持**:兼容Windows、Linux及嵌入式系统。 - **灵活接口**:支持C++、C#、Python等语言集成。 --- ### 2. **缺陷检测应用场景** Halcon常用于以下领域的缺陷检测: - **表面检测**:划痕、凹坑、污渍等(如金属、玻璃、塑料)。 - **印刷检测**:字符缺失、颜色偏差、错位。 - **电子元件检测**:焊点缺陷、引脚变形。 - **3D检测**:体积测量、形状偏差。 --- ### 3. **Halcon缺陷检测的核心方法** #### **3.1 传统图像处理方法** - **图像预处理** - **阈值分割**:通过设定灰度阈值分离目标区域,例如: $$ \text{二值化} = \begin{cases} 1 & \text{if } I(x,y) \geq T \\ 0 & \text{otherwise} \end{cases} $$ - **形态学操作**:腐蚀、膨胀等去除噪声或连接区域。 - **频域分析**:傅里叶变换检测周期性纹理缺陷。 - **特征提取** - **Blob分析**:提取区域的面积、形状、灰度等特征。 - **边缘检测**:使用Sobel、Canny算子定位缺陷边缘。 - **模板匹配** 通过`find_shape_model`函数匹配标准模板,定位偏差区域。 #### **3.2 深度学习方法** Halcon支持基于深度学习的缺陷检测: - **分类模型**:判断图像是否有缺陷。 - **语义分割**:精确标记缺陷像素位置(如UNet结构)。 - **异常检测**:无需缺陷样本,通过正常样本训练自动识别异常(如MVTec ANomaly Detection, **MVTec AD**)。 --- ### 4. **Halcon缺陷检测流程** 典型流程分为以下步骤: 1. **图像采集**:使用工业相机或线阵相机获取高分辨率图像。 2. **预处理**:校正光照不均、去噪(如`emphasize`函数增强对比度)。 3. **缺陷定位**:通过阈值、边缘或深度学习定位可疑区域。 4. **特征分析**:计算缺陷的面积、长度、位置等参数。 5. **分类决策**:根据阈值或分类模型判定是否合格。 6. **结果输出**:触发分拣装置或生成检测报告。 --- ### 5. **实际案例:金属表面划痕检测** ```python * 读取图像 read_image(Image, 'metal_surface.jpg') * 预处理:高斯滤波去噪 gauss_filter(Image, SmoothedImage, 5) * 阈值分割提取暗区域(划痕通常较暗) threshold(SmoothedImage, DarkRegions, 0, 100) * 形态学开运算去除小噪声 opening_circle(DarkRegions, CleanRegions, 3.5) * 连通域分析,筛选长宽比大的区域(划痕呈线状) connection(CleanRegions, ConnectedRegions) select_shape(ConnectedRegions, Scratches, ['rectangularity', 'area'], 'and', [0.1, 500], [0.5, 5000]) * 输出结果 count_obj(Scratches, NumScratches) if (NumScratches > 0) disp_message('检测到划痕!') endif ``` --- ### 6. **Halcon的优势与挑战** - **优势**: - 算法执行速度快,适合实时检测。 - 提供丰富的工具包(如OCR、3D视觉)。 - **挑战**: - 复杂缺陷需定制化算法设计。 - 光照、材质变化可能影响检测稳定性。 --- ### 7. **注意事项** - **光照控制**:使用均匀光源减少反光干扰。 - **标定与校准**:定期校正相机与镜头参数。 - **数据多样性**:深度学习模型需覆盖不同缺陷类型。 --- 通过结合传统算法与深度学习,**Halcon**能够高效解决工业场景中的复杂缺陷检测问题,显著提升生产质量与自动化水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值