摘要: 本文详细介绍了 HOG 特征提取的原理、计算步骤及其在众多领域的广泛应用。HOG 特征通过统计图像局部区域的梯度方向直方图来表征图像的外观特征,在目标检测、行人检测、车辆检测以及图像分类等任务中发挥了重要作用。文中深入探讨了其原理中的梯度计算、细胞单元划分、块划分和直方图统计等关键环节,并结合实际应用场景阐述了其优势与局限性。
一、引言
随着计算机视觉技术的不断发展,图像特征提取成为了许多视觉任务的关键环节。HOG 特征作为一种有效的局部特征描述符,能够很好地捕捉图像中的形状和纹理信息,为后续的分类和检测任务提供有力支持。它的出现极大地推动了目标检测等领域的进步,并且在实际应用中展现出了良好的鲁棒性和准确性。
二、HOG 特征提取原理
(一)梯度计算
- 原理
- 图像中的物体边缘和纹理等重要信息可以通过梯度来表征。对于一幅数字图像
,其水平方向( x轴)和垂直方向( y轴)的梯度可以使用有限差分来近似计算。最常用的方法是采用中心差分算子,水平梯度
和垂直梯度
的计算公式如下:
- 然后可以计算像素点 (x,y) 的梯度幅值
和梯度方向
,其计算公式为:
- 图像中的物体边缘和纹理等重要信息可以通过梯度来表征。对于一幅数字图像
- 意义
- 梯度幅值反映了图像中像素变化的强度,梯度方向则指示了像素变化的方向。在目标边缘处,梯度幅值通常较大,通过计算梯度可以有效地突出图像中的边缘和轮廓信息,为后续的特征提取提供基础。
(二)细胞单元划分
- 原理
- 为了更好地统计局部特征,将图像划分成若干个小的细胞单元(cell)。这些细胞单元通常是矩形的,例如可以将图像划分为
或
- 为了更好地统计局部特征,将图像划分成若干个小的细胞单元(cell)。这些细胞单元通常是矩形的,例如可以将图像划分为