HOG(Histogram of Oriented Gradients)特征提取原理及应用场景

摘要: 本文详细介绍了 HOG 特征提取的原理、计算步骤及其在众多领域的广泛应用。HOG 特征通过统计图像局部区域的梯度方向直方图来表征图像的外观特征,在目标检测、行人检测、车辆检测以及图像分类等任务中发挥了重要作用。文中深入探讨了其原理中的梯度计算、细胞单元划分、块划分和直方图统计等关键环节,并结合实际应用场景阐述了其优势与局限性。

一、引言

随着计算机视觉技术的不断发展,图像特征提取成为了许多视觉任务的关键环节。HOG 特征作为一种有效的局部特征描述符,能够很好地捕捉图像中的形状和纹理信息,为后续的分类和检测任务提供有力支持。它的出现极大地推动了目标检测等领域的进步,并且在实际应用中展现出了良好的鲁棒性和准确性。

二、HOG 特征提取原理

(一)梯度计算

  1. 原理
    • 图像中的物体边缘和纹理等重要信息可以通过梯度来表征。对于一幅数字图像$I(x,y)$ ,其水平方向( x轴)和垂直方向( y轴)的梯度可以使用有限差分来近似计算。最常用的方法是采用中心差分算子,水平梯度G_x(x,y)  和垂直梯度  G_y(x,y)的计算公式如下:
      G_x(x,y)=I(x + 1,y)-I(x - 1,y) \\G_y(x,y)=I(x,y + 1)-I(x,y - 1)
    • 然后可以计算像素点 (x,y) 的梯度幅值G(x,y)  和梯度方向\theta(x,y) ,其计算公式为:G(x,y)=\sqrt{G_x(x,y)^2+G_y(x,y)^2}\ \\theta(x,y)=\arctan\left(\frac{G_y(x,y)}{G_x(x,y)}\right)
  2. 意义
    • 梯度幅值反映了图像中像素变化的强度,梯度方向则指示了像素变化的方向。在目标边缘处,梯度幅值通常较大,通过计算梯度可以有效地突出图像中的边缘和轮廓信息,为后续的特征提取提供基础。

(二)细胞单元划分

  1. 原理
    • 为了更好地统计局部特征,将图像划分成若干个小的细胞单元(cell)。这些细胞单元通常是矩形的,例如可以将图像划分为 8\times8 或 
### HOG特征提取原理 HOGHistogram of Oriented Gradients)是一种用于描述局部形状和边缘方向分布的特征描述子。该方法通过计算并统计图像局部区域的梯度方向直方图来构成特征,从而突出目标物体的轮廓信息。 具体过程如下: - **细胞单元划分**:将输入图像划分为多个小的连通区域即细胞单元。 - **梯度计算**:对于每个像素点,在其邻域内计算灰度变化率得到梯度幅值和角度。 - **直方图构建**:在各个细胞单元上累积不同方向上的梯度强度形成一维向量表示。 - **块归一化处理**:为了提高对光照、阴影等因素的影响抵抗能力,采用对比度敏感函数对相邻几个细胞组成的区块做L2范数标准化操作[^1]。 ```matlab % MATLAB代码片段展示如何获取hogFeature winSize = [64, 128]; blockSize = [16, 16]; blockStride = [8, 8]; cellSize = [8, 8]; nbins = 9; hog = vision.HogFeatureExtractor('CellSize', cellSize,... 'NumBins', nbins); img = imread('example.jpg'); featureVector = hog(img); % 提取HOG特征向量 ``` ### SVM分类器工作原理 支持向量机(Support Vector Machine),简称SVM,旨在找到一个最优超平面使得两类样本尽可能分开,并保持最大间隔。当数据线性不可分时,则引入核技巧映射到高维空间后再寻找分割面。训练过程中主要解决的是二次规划问题,目的是最小化结构风险以获得更好的泛化性能。 核心概念包括但不限于: - **支撑向量**:位于边界两侧最近的数据点集合决定了最终决策界面的位置。 - **软边距**:允许部分错误分类情况发生以便更好地适应实际应用场景中的噪声干扰等问题。 - **核函数**:实现低维度输入空间至更高维度特征空间转换的关键工具之一,常见的有RBF(径向基)、多项式等形式[^2]。 ### HOG+SVM组合使用方法 利用HOG作为前端特征抽取手段而SVM负责后续模式识别任务构成了简单却高效的视觉对象检测框架。通常做法是在给定候选窗口位置处先执行上述提到过的HOG流程生成固定长度表征;接着以此为依据建立正负样例集并通过交叉验证调参等方式完成模型拟合;最后针对测试阶段的新实例重复相同步骤进而预测类别标签归属关系。 这种架构的优势在于充分发挥两者各自特长——前者擅长捕捉局部纹理细节差异后者则能有效应对复杂背景下的多变姿态挑战。因此广泛应用于行人跟踪、车牌定位等领域之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值