混合高斯模型(GMM)原理及应用场景(代码在文末,可直接复制粘贴使用)

一、混合高斯模型原理

(一)基本概念

  1. 高斯分布(正态分布)
    • 高斯分布是一种非常重要的概率分布,其概率密度函数为N(x|\mu,\sigma^{2})=\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x - \mu)^{2}}{2\sigma^{2}}\right),其中\mu是均值,它决定了分布的中心位置;\sigma^{2}是方差,它决定了分布的宽度。例如,在一个班级学生的考试成绩分布中,如果成绩大致符合高斯分布,均值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值