问题描述
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
算法解析
1、使用3个一维数组表示皇后的位置,
- 左斜(差相等,可加8使其值变为正数)
- 直竖(纵坐标相等)
- 右斜(和相等)
2、假设前i-1行的皇后已经按照规则排列好,
那么可以使用回溯法逐个试出第i行皇后的合法位置,
所有皇后的初始位置都是第1列,
那么逐个尝试就是从1试到8,
如果达到8,仍未找到合法位置,
那么回退一行,进行回溯操作,继续尝试。
如果目前处于第1行,还要再回退,说明此问题已再无解。
3、如果当前行的皇后的位置还是在1到8的合法范围内,
那么首先要判断该行的皇后是否与前几行的皇后互相冲突,
如果冲突,该行的皇后的位置加1,继续尝试,
如果不冲突,递归调用判断下一行的皇后,
如果已经是最后一行,说明已经找到一个解,解的个数加1.
代码run.h:
#include<iostream>
using namespace std;
int a[9];
int b[9]={0};//表示所在的列,直竖(纵坐标相等)
int c[16]={0};//和相等
int d[16]={0};//左斜(差相等)
int sum=0;
void searchh(int i)
{
for(int j=1;j<=8;j++)//填写表格的每一行
{ //如果此行的该位置左斜(差相等),直竖(纵坐标相等),右斜(和相等)都不冲突
//!b[j]直竖不冲突,!c[i+j]右斜不冲突,!d[i-j+7]左斜不冲突
if((!b[j])&&(!c[i+j])&&(!d[i-j+8]))
{
/********** Begin **********/
//该位置合法那么进行一下操作
if(i == 8){
sum++;//已经得到最后一行的一个合法位置,那么解的个数+1
return;//得到的解肯定是唯一的,直接返回
}
//更新,直竖数组,左斜数组,右斜数组
b[j]=1;
c[i+j]=1;
d[i-j+8]=1;
searchh(i+1);//继续在下一行搜索
//回溯操作
b[j]=0;
c[i+j]=0;
d[i-j+8]=0;
/********** End **********/
}
}
}
代码run.cpp
#include "usr.h"
int main()
{
searchh(1);
cout<<sum;
return 0;
}