Eight皇后问题

回溯法求解八皇后问题

问题描述

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

算法解析

1、使用3个一维数组表示皇后的位置,

  1. 左斜(差相等,可加8使其值变为正数)
  2. 直竖(纵坐标相等)
  3. 右斜(和相等)

2、假设前i-1行的皇后已经按照规则排列好,
那么可以使用回溯法逐个试出第i行皇后的合法位置,
所有皇后的初始位置都是第1列,
那么逐个尝试就是从1试到8,
如果达到8,仍未找到合法位置,
那么回退一行,进行回溯操作,继续尝试。
如果目前处于第1行,还要再回退,说明此问题已再无解。

3、如果当前行的皇后的位置还是在1到8的合法范围内,
那么首先要判断该行的皇后是否与前几行的皇后互相冲突,
如果冲突,该行的皇后的位置加1,继续尝试,
如果不冲突,递归调用判断下一行的皇后,
如果已经是最后一行,说明已经找到一个解,解的个数加1.

代码run.h:

#include<iostream>
using namespace std;
int a[9];
int b[9]={0};//表示所在的列,直竖(纵坐标相等)
int c[16]={0};//和相等
int d[16]={0};//左斜(差相等)
int sum=0;

void searchh(int i)
{
    for(int j=1;j<=8;j++)//填写表格的每一行
    {  //如果此行的该位置左斜(差相等),直竖(纵坐标相等),右斜(和相等)都不冲突
      //!b[j]直竖不冲突,!c[i+j]右斜不冲突,!d[i-j+7]左斜不冲突
        if((!b[j])&&(!c[i+j])&&(!d[i-j+8]))
        {
            /********** Begin **********/
            //该位置合法那么进行一下操作
            if(i == 8){
            	sum++;//已经得到最后一行的一个合法位置,那么解的个数+1
            	return;//得到的解肯定是唯一的,直接返回
            }
            //更新,直竖数组,左斜数组,右斜数组
      		b[j]=1; 
      		c[i+j]=1;
      		d[i-j+8]=1;

      		searchh(i+1);//继续在下一行搜索
            //回溯操作
      		b[j]=0; 
      		c[i+j]=0;
      		d[i-j+8]=0;
            
            /********** End **********/
        }
    }
}

代码run.cpp

#include "usr.h"
int main()
{
    searchh(1);
    cout<<sum;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值