1.导入相应包
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from matplotlib import pyplot as plt
import numpy as np
2.准备数据集
digits = load_digits()
digits.data.shape
返回(1797, 64),说明是由1797张长宽为8*8的照片。
3.绘制原始数据集
def plot_digits(data):
fig, axes = plt.subplots(4, 10, figsize=(20, 8), subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8, 8), cmap='binary')
plot_digits(digits.data)
plt.savefig(r"C:\Users\86377\Desktop\1.png")
最后显示的图片如下:
4.添加高斯噪声
rng = np.random.RandomState(42)
noisy = rng.normal(digits.data, 2)
plot_digits(noisy)
plt.savefig(r"C:\Users\86377\Desktop\2.png")
plt.show()
添加噪声后的图片如下:
我们可以看到添加了噪声的图片模糊了很多。
5.还原
without_noisy = pca.inverse_transform(X_dr)
plot_digits(without_noisy)
plt.savefig(r"C:\Users\86377\Desktop\2.png")
这里我们得到的图像:
可以看到和原始图片相近,起到了过滤噪声的作用。