深挖ROC曲线(截断值计算) - 基于R语言

本文探讨ROC曲线在二分类问题中的应用,解释如何通过混淆矩阵计算准确度,以及为何需要计算截断值。重点讨论了AUC计算、最佳截断值的确定方法,如最大F1值和sensitivities+specificities,并提供了R语言的实现代码。同时介绍了ROC曲线的绘制和AUC的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

ROC曲线,多用于二分类问题的评价,通过选取合适的截断值(阈值threshold)便能得出AUC。但很多时候我们只是单纯地通过调包来计算AUC并绘制ROC曲线,其中的原理和最佳阈值的筛选往往被人们忽略。同时笔者最近的项目中需要重新温习这些小细节,故撰文积累一下。(本文不以实际用途出发,若只想得出结果可以看看这篇: ROC曲线基于R语言

混淆矩阵

混淆矩阵是计算Accuracy(准确度),Sensitivity(敏感性, FPR)和Specificity(精确性, TPR)的必经之路。我们通过一个实例来具体阐释混淆矩阵(通过R语言的CrossTable计算所得):

             | prediction 
  test$label |         0 |         1 | Row Total | 
-------------|-----------|-----------|-----------|
           0 |        41 |         7 |        48 | 
             |     0.854 |     0.146 |     0.475 | 
-------------|-----------|-----------|-----------|
           1 |         9 |        44 |        53 | 
             |     0.170 |     <
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值