R语言-生存分析与结果的图像处理

本文介绍了如何使用R语言进行生存分析,包括数据准备、Kaplan-Meier非参数法、Log-Rank检验、Cox半参数法、相似比检验以及生存曲线和诊断图的绘制。通过具体的例子展示了生存分析过程,并提供了相关检验和结果的解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言-生存分析与结果的图像处理

数据准备:

library("survival")
library("survminer")
data("lung")

调用“lung”数据集,使用head()命令调查前6行,得到以下结果:

 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1    3  306      2  74   1       1       90       100     1175      NA
2    3  455      2  68   1       0       90        90     1225      15
3    3 1010      1  56   1       0       90        90       NA      15
4    5  210      2  57   1       1       90        60     1150      11
5    1  883      2  60   1       0      100        90       NA       0
6   12 1022      1  74   1       1       50        80      513       0

time是指生存时间,status是二值型的生存状态,其中“1”代表存活,“2”代表已经死亡。

KM非参数法:

调用survival包中的survfit来进行生存分析,得到每个时间段中的生存率。

fit <- survfit(Surv(time, status) ~ 1, data = lung)

直接查看fit的信息可以看到

> fit
Call: survfit(formula = Surv(time,
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值