单源最短路径

Dijkstra

  给定带权有向图G=(V,E),其中每一条边的权都是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到其他各个顶点的最短路长度。这里的路长度是指路上各边权之和。
   Dijkstra算法可以描述如下:
   其中,输入带权有向图G=(V,E),V={1,2,..<n}。顶点v是源。a一个二维数组,a[i][j]表示边(i,j)的权。当(i,j)不属于E时,a[i][j]是一个大数,dist[i]表示当前源到顶点i的最短特殊路径长度。

程序代码


import java.util.Scanner;
 
public class Dijkstra {
	/**
	 * 单源最短路径
	 * @param v 顶点
	 * @param a 图用二维数组表示
	 * @param dist 从顶点到每个点的距离用数组表示
	 * @param prev 前驱结点数组
	 */
	public static void dijkstra(int v,float[][] a,float[] dist,int[] prev){
		
		int n=dist.length-1;
		if(v<1||v>n) return;//合法性检测
		boolean[] s=new boolean[n+1];//顶点放入或不放入的标志
		//初始化
		for(int i=1;i<=n;i++){
			dist[i]=a[v][i];
			s[i]=false;
			if(dist[i]==-1)
				prev[i]=0;
			else
				prev[i]=v;
		}
		dist[v]=0;//顶点放入
		s[v]=true;
		for(int i=1;i<n;i++){//共扫描n-1次
			float temp=Float.MAX_VALUE;
			int u=v;//u存放下一个被放入的点
			for(int j=1;j<=n;j++){//循环找到下一个距离最短的点
				if(!s[j]&&dist[j]<temp&&dist[j]!=-1){
					u=j;
					temp=dist[j];
				}
			}
				s[u]=true;
				for(int j1=1;j1<=n;j1++){//循环更改每个点的最短距离
					if(!s[j1]&&a[u][j1]!=-1){
						float newdist=dist[u]+a[u][j1];
						if(newdist<dist[j1]||dist[j1]==-1){
							dist[j1]=newdist;
							prev[j1]=u;
						}
					}
				}
		}
		for(int i=2;i<=n;i++){
			System.out.println(i+"节点的最短距离是:"+dist[i]+";前驱点是:"+prev[i]);
		}
	}
	public static void main(String[] args) {
		System.out.println("请输入图顶点的个数:");
		Scanner sc = new Scanner(System.in);
		String line = sc.nextLine();
		int n = Integer.parseInt(line);
		System.out.println("请输入图的路径长度:");
		float[][] a = new float[n+1][n+1];//下标从1开始,以下都是
		float[] dist = new float[n+1]; 
		int[] prev = new int[n+1];
		for(int i=0;i<n;i++){
			line =  sc.nextLine();			
			String[] ds = line.split(",");
			for(int j = 0;j<ds.length;j++){
				a[i+1][j+1]=Float.parseFloat(ds[j]);
			}
		}
		
        //a[][]的下标从1 开始,因此,下面的0只是用来填满位置,无其他用处;-1表示两点不通
		//float[][] a={{0,0,0,0,0,0},{0,-1,10,-1,30,100},{0,-1,-1,50,-1,-1},{0,-1,-1,-1,-1,10},{0,-1,-1,20,-1,60},{0,-1,-1,-1,-1,-1}};
		//int n=a.length;
		//float[] dist = new float[n];
		//int[] prev = new int[n];
		
		int v =1 ;//顶点从1开始
		dijkstra(v,a,dist,prev);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简 。单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值