Dijkstra
给定带权有向图G=(V,E),其中每一条边的权都是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到其他各个顶点的最短路长度。这里的路长度是指路上各边权之和。
Dijkstra算法可以描述如下:
其中,输入带权有向图G=(V,E),V={1,2,..<n}。顶点v是源。a一个二维数组,a[i][j]表示边(i,j)的权。当(i,j)不属于E时,a[i][j]是一个大数,dist[i]表示当前源到顶点i的最短特殊路径长度。
程序代码
import java.util.Scanner;
public class Dijkstra {
public static void dijkstra(int v,float[][] a,float[] dist,int[] prev){
int n=dist.length-1;
if(v<1||v>n) return;
boolean[] s=new boolean[n+1];
for(int i=1;i<=n;i++){
dist[i]=a[v][i];
s[i]=false;
if(dist[i]==-1)
prev[i]=0;
else
prev[i]=v;
}
dist[v]=0;
s[v]=true;
for(int i=1;i<n;i++){
float temp=Float.MAX_VALUE;
int u=v;
for(int j=1;j<=n;j++){
if(!s[j]&&dist[j]<temp&&dist[j]!=-1){
u=j;
temp=dist[j];
}
}
s[u]=true;
for(int j1=1;j1<=n;j1++){
if(!s[j1]&&a[u][j1]!=-1){
float newdist=dist[u]+a[u][j1];
if(newdist<dist[j1]||dist[j1]==-1){
dist[j1]=newdist;
prev[j1]=u;
}
}
}
}
for(int i=2;i<=n;i++){
System.out.println(i+"节点的最短距离是:"+dist[i]+";前驱点是:"+prev[i]);
}
}
public static void main(String[] args) {
System.out.println("请输入图顶点的个数:");
Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
int n = Integer.parseInt(line);
System.out.println("请输入图的路径长度:");
float[][] a = new float[n+1][n+1];
float[] dist = new float[n+1];
int[] prev = new int[n+1];
for(int i=0;i<n;i++){
line = sc.nextLine();
String[] ds = line.split(",");
for(int j = 0;j<ds.length;j++){
a[i+1][j+1]=Float.parseFloat(ds[j]);
}
}
int v =1 ;
dijkstra(v,a,dist,prev);
}
}