边缘检测算法——Laplace算子

1.拉普拉斯算子

拉普拉斯算子是一个二阶边缘算子,即梯度的散度。拉普拉斯算子的实现也是通过模板实现。常用的拉普拉斯模板定义如下:

拉普拉斯算子计算图像的二阶导数,对于图像噪声比较敏感。拉普拉斯算子的结果为标量,表示边缘的宽度。但是它经常产生双像素宽边缘,而且不能提供方向信息,因此较少使用于边缘检测。在VTK中由vktImageDataLaplacian实现。

2.代码

`#include “Test.h”
#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL2);
VTK_MODULE_INIT(vtkInteractionStyle);

#include <vtkSmartPointer.h>
#include <vtkJPEGReader.h>
#include <vtkImageData.h>
#include <vtkImageLaplacian.h>
#include <vtkImageShiftScale.h>
#include <vtkImageActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkInteractorStyleImage.h>

int main(int argc, char* argv[])
{

vtkSmartPointer<vtkJPEGReader> reader =
	vtkSmartPointer<vtkJPEGReader>::New();
reader->SetFileName("data/Lena.jpg");
reader->Update();


//vtkImageLaplace输入和输出数据都是vtkImageData,与梯度算子不同,该filter的输出图像像素为标量。
//函数SetDimensionality用于设置图像的维数,默认为2维。计算完毕后,利用vtkimage ShifyScalar 将图像的数据范围变换至0-255之间。

vtkSmartPointer<vtkImageLaplacian> lapFilter =
	vtkSmartPointer<vtkImageLaplacian>::New();
lapFilter->SetInputConnection(reader->GetOutputPort());
lapFilter->SetDimensionality(2);

double range[2];
lapFilter->GetOutput()->GetScalarRange(range);

vtkSmartPointer<vtkImageShiftScale> ShiftScale =
	vtkSmartPointer<vtkImageShiftScale>::New();
ShiftScale->SetOutputScalarTypeToUnsignedChar();
ShiftScale->SetScale(255 / (range[1] - range[0]));
ShiftScale->SetShift(-range[0]);
ShiftScale->SetInputConnection(lapFilter->GetOutputPort());
ShiftScale->Update();

vtkSmartPointer<vtkImageActor> originalActor =
	vtkSmartPointer<vtkImageActor>::New();
originalActor->SetInputData(reader->GetOutput());

vtkSmartPointer<vtkImageActor> gradActor =
	vtkSmartPointer<vtkImageActor>::New();
gradActor->SetInputData(ShiftScale->GetOutput());

double originalViewport[4] = { 0.0, 0.0, 0.5, 1.0 };
double gradviewport[4] = { 0.5, 0.0, 1.0, 1.0 };

vtkSmartPointer<vtkRenderer> originalRenderer =
	vtkSmartPointer<vtkRenderer>::New();
originalRenderer->SetViewport(originalViewport);
originalRenderer->AddActor(originalActor);
originalRenderer->ResetCamera();
originalRenderer->SetBackground(1.0, 1.0, 1.0);

vtkSmartPointer<vtkRenderer> gradRenderer =
	vtkSmartPointer<vtkRenderer>::New();
gradRenderer->SetViewport(gradviewport);
gradRenderer->AddActor(gradActor);
gradRenderer->ResetCamera();
gradRenderer->SetBackground(1.0, 1.0, 1.0);

vtkSmartPointer<vtkRenderWindow> rw =
	vtkSmartPointer<vtkRenderWindow>::New();
rw->AddRenderer(originalRenderer);
rw->AddRenderer(gradRenderer);
rw->SetSize(640, 320);
rw->Render();
rw->SetWindowName("Edge by Laplacian");

vtkSmartPointer<vtkRenderWindowInteractor> rwi =
	vtkSmartPointer<vtkRenderWindowInteractor>::New();
vtkSmartPointer<vtkInteractorStyleImage> style =
	vtkSmartPointer<vtkInteractorStyleImage>::New();

rwi->SetInteractorStyle(style);
rwi->SetRenderWindow(rw);
rwi->Initialize();
rwi->Start();

return 0;

}`

3.运行结果在这里插入图片描述

拉普拉斯边缘检测算子是一种二阶导数算子,用于检测图像中的边缘。它具有旋转不变性,可以满足不同方向的边缘锐化的要求。常用的拉普拉斯算子是通过模板实现的,例如一个3×3大小的Laplacian算子拉普拉斯算子的结果为标量,表示边缘的宽度。然而,它对图像噪声比较敏感,经常产生双像素宽边缘,并且不能提供方向信息,因此在边缘检测中使用较少。为了减少噪声的影响,常常需要配合高斯滤波一起使用。在VTK中,可以使用vtkImageDataLaplacian函数来实现拉普拉斯边缘检测算子。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [边缘检测算法——Laplace算子](https://blog.csdn.net/m0_45306991/article/details/124594310)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法](https://blog.csdn.net/qiaodahua/article/details/128083612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Opencv之图像边缘检测:3.Laplacian算子(cv2.Laplacian)](https://blog.csdn.net/qq_49478668/article/details/123808815)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简 。单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值