预测学生期末成绩

该博客通过Python的线性回归模型分析了学生的学习效率与期末成绩之间的关系。首先,导入必要的库并读取CSV数据,接着绘制散点图以确定两者之间的强相关性。然后,建立线性回归模型,并进行模型检验。最后,利用模型预测不同学习效率下的成绩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预测学生期末成绩
在这里插入图片描述确定变量,成绩与学习效率之间的关系
import numpy
from pandas import read_csv
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
data = read_csv(
‘C:\Users\Administrator\Desktop\WBB1.csv’,encoding=‘GBK’
)
绘制散点图,确定回归模型类型
根据前面的数据,画出自变量与因变量的散点图,看看是否可以建立回归方程,在简单线性回归分析中,我们只需要确定自变量与因变量的相关度为强相关性,即可确定可以建立简单线性回归方程,我们很容易就求解出成绩与学习效率之间的相关系数是0.97,也就是具有强相关性,从散点图中也可以看出。
在这里插入图片描述
在这里插入图片描述建立模型
lrModel = LinearRegression()
选择自变量因变量
x = data[[‘学习效率’]]
y = data[[‘成绩’]]
lrModel.fit(x,y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值