24.动态规划之-买卖股票的最佳时机1.py

文章描述了一种解决LeetCode问题的方法,通过动态规划求解在给定股票价格数组中找到买入和卖出的最佳时机以获取最大利润。算法涉及初始化、状态转移和计算最大利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# LeetCode:121.
#交易一次
# 给定一个数组prices ,它的第i个元素prices[i]
# 表示一支给定股票第i天的价格。
#
# 你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。
# 设计一个算法来计算你所能获取的最大利润。
#
# 返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0 。
#
#
# 示例1:
# 输入:[7, 1, 5, 3, 6, 4]
# 输出:5
# 解释:在第2天(股票价格 = 1)的时候买入,在第5天(股票价格 = 6)的时候卖出,最大利润 = 6 - 1 = 5 。
# 注意利润不能是7 - 1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
#
# 示例2:
# 输入:prices = [7, 6, 4, 3, 1]
# 输出:0
# 解释:在这种情况下, 没有交易完成, 所以最大利润为0。
#

# 1.dp[i][0]第i天 持有股票的最大利润,dp[i][1]第i天 不持有股票的最大利润
# 2. 递推公式 dp[i][0] = max(dp[i-1][0],prices[i])
#           dp[i][1] = max(dp[i-1][1],-prices[i])

# 3初始化 dp[0][0] = -prince[0]  dp[0][1]=0
# 4.遍历顺序
# 5.打印dp




prices = [7, 1, 5, 3, 6, 4]


def get_most(prices):
    dp = [[0] * 2 for _ in range(len(prices))]
    dp[0][0] = - prices[0]  # 第0天持有股票最大利润
    dp[0][1] = 0
    for i in range(1, len(prices)):
        dp[i][0] = max(dp[i - 1][0], 0-prices[i])  # 第i-1就持有 和 第i天买进
        dp[i][1] = max(dp[i - 1][1], prices[i]+dp[i - 1][0])
    print(dp)
    return max(dp[len(prices)-1][0], dp[len(prices)-1][1])

print(get_most(prices))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值