目录
一、训练加速
针对训练数据过于庞大的对策,多GPU训练,加速生产模型的速度,可以认为是离线操作。
常用的GPU训练:
- 基于数据的并行(常用)
- 基于模型的并行
我们主要看一下基于数据的并行,下面列出了三种并行方式
①Model Average(模型平均)
②SSGD(同步随机梯度下降)
③ASGD*(异步随机梯度下降)
1.基于数据的并行
①Model Average(模型平均)
假设有10000条数据,分成10份,每份1000条,用十个GPU分别训练,最后将得到的模型进行平均。这样训练出来的模型之间是相互独立的,故性能不会很好。

本文详细探讨了深度学习的训练加速和推理加速技术,包括基于数据和模型的并行策略,如Model Average、SSGD和ASGD。在推理优化方面,介绍了SVD分解、Hidden Node prune、知识蒸馏、参数共享和神经网络量化等方法,旨在减小模型大小和提高推理速度。同时,文章还讨论了深度学习的自适应策略,如网络迁移和数据混合,以适应不同场景需求。
订阅专栏 解锁全文
&spm=1001.2101.3001.5002&articleId=126034670&d=1&t=3&u=70d9200c88414235a0b6571647ff9d16)
1万+





