实际工作中的高级技术(训练加速、推理加速、深度学习自适应、对抗神经网络)

本文详细探讨了深度学习的训练加速和推理加速技术,包括基于数据和模型的并行策略,如Model Average、SSGD和ASGD。在推理优化方面,介绍了SVD分解、Hidden Node prune、知识蒸馏、参数共享和神经网络量化等方法,旨在减小模型大小和提高推理速度。同时,文章还讨论了深度学习的自适应策略,如网络迁移和数据混合,以适应不同场景需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、训练加速

1.基于数据的并行 

①Model Average(模型平均)

②SSGD(同步随机梯度下降)

③ASGD*(异步随机梯度下降)

 2.基于模型的并行

二、推理加速

1.SVD分解*

2.Hidden Node prune

3.知识蒸馏*

4.参数共享

5.神经网络的量化*

6.Binary Net

7.基于fft的循环矩阵加速

三、深度学习自适应

1.初始参数的网络迁移

2.场景自适应(KLD)

3.数据的混合

四、对抗神经网络


一、训练加速

针对训练数据过于庞大的对策,多GPU训练,加速生产模型的速度,可以认为是离线操作。

常用的GPU训练:

  1. 基于数据的并行(常用)
  2. 基于模型的并行

我们主要看一下基于数据的并行,下面列出了三种并行方式

        ①Model Average(模型平均)

        ②SSGD(同步随机梯度下降)

        ③ASGD*(异步随机梯度下降)

1.基于数据的并行 

①Model Average(模型平均)

        假设有10000条数据,分成10份,每份1000条,用十个GPU分别训

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值