CUDA安装教程(超详细)

这篇博客详细介绍了在Windows10上安装CUDA和cuDNN的步骤,包括下载合适的CUDA版本,安装过程中需要注意的事项,以及cuDNN的下载和配置。安装完成后,通过环境变量配置和测试程序验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

cuda的下载及安装

cuda版本

CUDA toolkit Download

cuda安装

cuDNN下载及安装

cuDNN下载

cuDNN配置

参考自


 Linux版本的CUDA安装看这里Linux安装显卡驱动、annaconda和CUDA(超详细)

前言

windows10 版本安装 CUDA ,首先需要下载两个安装包

  • CUDA toolkit(toolkit就是指工具包)
  • cuDNN

注:cuDNN 是用于配置深度学习使用

官方教程

CUDA:Installation Guide Windows :: CUDA Toolkit Documentation

cuDNN:Installation Guide :: NVIDIA Deep Learning cuDNN Documentation

cuda的下载及安装

cuda版本

如何判断自己应该下载什么版本的cuda呢?

打开nvidia(桌面右键)->选择左下角的系统信息->组件

第三行,可以看到自己电脑支持的cuda

CUDA toolkit Download

​​​​​kCUDA Toolkit Archive | NVIDIA Developer

点进去,按照如下配置选择,然后点击下载:

最终下载出.exe格式的文件

cuda安装

安装cuda时,第一次会让设置临时解压目录,第二次会让设置安装目录;

临时解压路径,建议默认即可,也可以自定义。安装结束后,临时解压文件夹会自动删除;

安装目录,建议默认即可;

注意:临时解压目录千万不要和cuda的安装路径设置成一样的,否则安装结束,会找不到安装目录的!!!

选择自定义安装

安装完成后,配置cuda的环境变量;

命令行中,测试是否安装成功;

双击“exe文件”,选择下载路径(推荐默认路径)

同意并继续

自定义安装,精简版本是下载好所有组件,并且会覆盖原有驱动,所以在这里推荐自定义下载

如果你是第一次安装,尽量全选

如果你是第n次安装,尽量只选择第一个,不然会出现错误

没有选择visual studio,后面说找不到,就返回取消了这个复选框

记住默认的安装路径

在安装了

Ok啦,点击下一步即可

查看环境变量

点击设置-->搜索高级系统设置-->查看环境变量

【如果没有需要自己添加】

系统变量的三四行有两个路径,是自动生成的

还有两个这个

有的小伙伴说后两个变量没有自动生成,没有生成的手动添加就行,注意自己的路径

这两个变量放在下面啦,方便复制

NVCUDASAMPLES_ROOT

NVCUDASAMPLES11_0_ROOT

验证是否安装成功:

运行cmd,输入nvcc --version 即可查看版本号;

set cuda,可以查看 CUDA 设置的环境变量。

nvcc --version
OR
nvcc -V
set cuda

安装成功

cuDNN下载及安装

cuDNN下载

cuDNN地址如下,不过要注意的是,我们需要注册一个账号,才可以进入到下载界面。大家可以放心注册的。

https://developer.nvidia.com/rdp/cudnn-download

点击注册

注册成功后的下载界面

可以使用下面网址,查看适配的 cuDNN

cuDNN Archive | NVIDIA Developer

选择跟自己的cuda版本适配的cudnn版本

选择如下版本

下载结果是一个压缩包

cuDNN配置

cuDNN叫配置更为准确,我们先把下载的 cuDNN 解压缩,会得到下面的文件:

下载的文件都在这个目录下:

D:\software\cuda\package

解压后的文件:

下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹,把三个文件夹拷贝到cuda的安装目录下。

CUDA 的安装路径在前面截图中有,或者打开电脑的环境变量查看,默认的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0

拷贝时看到,CUDA 的安装目录中,有和 cuDNN 解压缩后的同名文件夹,这里注意,不需要担心,直接复制即可。cuDNN 解压缩后的同名文件夹中的配置文件会添加到 CUDA安装目录中的同名文件夹中。【此处还是建议还是分别把文件夹的内容复制到对应文件夹中去】

现在大家应该可以理解,cuDNN 其实就是 CUDA 的一个补丁而已,专为深度学习运算进行优化的。然后再参加环境变量

添加后出现了这个,不知道会不会有问题

添加至系统变量:

往系统环境变量中的 path 添加如下路径(根据自己的路径进行修改)

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\libnvvp

验证安装是否成功

配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:

首先win+R启动cmd,cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),应该得到下图:

参考自

【CUDA】cuda安装 (windows版)_haoweixl的博客-CSDN博客_cuda安装

cuda安装教程+cudnn安装教程_sinat_23619409的博客-CSDN博客_cuda安装

CUDA安装教程_Bushka_的博客-CSDN博客_安装cuda

Windows10 系统下cuda安装教程,小白教程 !很详细!!_一个小呆苗的博客-CSDN博客

### 非Root用户安装CUDA指南 对于不具备管理员权限的用户来说,在Linux环境中安装CUDA工具包存在一定的挑战。然而,通过一些特定的方法仍然可以实现这一目标。 #### 下载适用于本地用户的CUDA Toolkit 可以从NVIDIA官方网站下载适合于操作系统的CUDA版本[^2]。选择运行库而非完整的安装器来获取仅包含必要组件的压缩文件。这种方式不需要超级用户权限即可完成部署。 #### 设置环境变量 为了使编译器和其他命令能够找到CUDA的相关路径,需设置`PATH`和`LD_LIBRARY_PATH`环境变量指向解压后的目录位置。可以在个人shell配置文件(如`.bashrc`或`.zshrc`)中添加如下内容: ```bash export PATH=/path/to/cuda/bin:$PATH export LD_LIBRARY_PATH=/path/to/cuda/lib64:$LD_LIBRARY_PATH ``` 这里应替换实际解压得到的CUDA路径到上述指令中的`/path/to/cuda`部分。 #### 安装依赖项 虽然主要的CUDA功能可以通过以上方式获得,但是某些情况下仍需要额外的支持软件包才能正常使用全部特性。这些通常包括但不限于GCC编译器及其关联工具链、CMake构建系统以及其他开发库。如果所在机器上已经预装了合适的版本,则可以直接利用;否则考虑使用容器化技术像Docker或者Conda虚拟环境来创建独立的工作空间并自行管理所需依赖关系[^4]。 #### 测试安装情况 最后一步是验证安装是否成功以及能否正常工作。编写简单的测试程序以确认GPU加速计算的能力被正确激活是非常重要的。例如尝试执行位于CUDA SDK示例项目里的任何一个小例子,并观察其输出结果是否符合预期[^3]。
评论 210
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值