8/2 opencv-python学习笔记

介绍 SURF(Speeded-Up Robust Features)

目标
 本节我们将要学习:
  • SUFR 的基础是什么?
  • OpenCV 中的 SURF
原理
  在上一节中我们学习了使用 SIFT 算法进行关键点检测和描述。但是这种算法的执行速度比较慢,人们需要速度更快的算法。在 2006 年Bay,H.,Tuytelaars,T. 和 Van Gool,L 共同提出了 SURF(加速稳健特征)算法。跟它的名字一样,这是个算法是加速版的 SIFT。
在 SIFT 中,Lowe 在构建尺度空间时使用 DoG 对 LoG 进行近似。SURF使用盒子滤波器(box_filter)对 LoG 进行近似。下图显示了这种近似。在进行卷积计算时可以利用积分图像(积分图像的一大特点是:计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关),是盒子滤波器的一大优点。而且这种计算可以在不同尺度空间同时进行。同样 SURF 算法计算关键点的尺度和位置是也是依赖与 Hessian 矩阵行列式的。
在这里插入图片描述
为了保证特征矢量具有选装不变形,需要对于每一个特征点分配一个主要方向。需要以特征点为中心,以 6s(s 为特征点的尺度)为半径的圆形区域内,对图像进行 Harr 小波相应运算。这样做实际就是对图像进行梯度运算,但是利用积分图像,可以提高计算图像梯度的效率,为了求取主方向值,需哟啊设计一个以方向为中心,张角为 60 度的扇形滑动窗口,以步长为 0.2 弧度左右旋转这个滑动窗口,并对窗口内的图像 Haar 小波的响应值进行累加。主方向为最大的 Haar 响应累加值对应的方向。在很多应用中根本就不需要旋转不变性,所以没有必要确定它们的方向,如果不计算方向的话,又可以使算法提速。SURF 提供了成为 U-SURF 的功能,它具有更快的速度,同时保持了对 +/-15 度旋转的稳定性。OpenCV 对这两种模式同样支持,只需要对参数upright 进行设置,当 upright 为 0 时计算方向,为 1 时不计算方向,同时速度更快。
在这里插入图片描述
生成特征点的特征矢量需要计算图像的 Haar 小波响应。在一个矩形的区域内,以特征点为中心,沿主方向将 20s20s 的图像划分成 44 个子块,每个子块利用尺寸 2s 的 Haar 小波模版进行响应计算,然后对响应值进行统计,组成向量
在这里插入图片描述
这个描述符的长度为 64。降低的
维度可以加速计算和匹配,但又能提供更容易区分的特征。
为了增加特征点的独特性,SURF 还提供了一个加强版 128 维的特征描述符。当 d y 大于 0 和小于 0 时分别对 d x 和 |d x | 的和进行计算,计算 d y和 |d y | 时也进行区分,这样获得特征就会加倍,但又不会增加计算的复杂度。
OpenCV 同样提供了这种功能,当参数 extended 设置为 1 时为 128 维,当参数为 0 时为 64 维,默认情况为 128 维。
在检测特征点的过程中计算了 Hessian 矩阵的行列式,与此同时,计算得到了 Hessian 矩阵的迹,矩阵的迹为对角元素之和。
按照亮度的不同,可以将特征点分为两种,第一种为特征点迹其周围小邻域的亮度比背景区域要亮,Hessian 矩阵的迹为正;另外一种为特征点迹其周围小邻域的亮度比背景区域要暗,Hessian 矩阵为负值。根据这个特性,首先对两个特征点的 Hessian 的迹进行比较。如果同号,说明两个特征点具有相同的对比度;如果异号的话,说明两个特征点的对比度不同,放弃特征点之间的后续的相似性度量。
对于两个特征点描述子的相似性度量,我们采用欧式距离进行计算。
在这里插入图片描述
简单来说 SURF 算法采用了很多方法来对每一步进行优化从而提高速度。
分析显示在结果效果相当的情况下 SURF 的速度是 SIFT 的 3 倍。SURF 善于处理具有模糊和旋转的图像,但是不善于处理视角变化和关照变化。
与SIFT比较:
在这里插入图片描述

OpenCV 中的 SURF

与 SIFT 相同 OpenCV 也提供了 SURF 的相关函数。首先我们要初始化一个 SURF 对象,同时设置好可选参数:64/128 维描述符,Upright/Normal 模式等。所有的细节都已经在文档中解释的很明白了。就像我们在SIFT 中一样,我们可以使用函数 SURF.detect(),SURF.compute() 等来进行关键点搀着和描述。

创建一个SURF对象:

cv2.xfeatures2d.SURF_create(, hessianThreshold, nOctaves, nOctaveLayers, extended, upright)

     hessianThreshold:默认100,关键点检测的阈值,越高监测的点越少
     nOctaves:默认4,金字塔组数
     nOctaveLayers:默认3,每组金子塔的层数
     extended:默认False,扩展描述符标志,True表示使用扩展的128个元素描述符,     False表示使用64个元素描述符。
     upright:默认False,垂直向上或旋转的特征标志,True表示不计算特征的方向,False-计算方向。之后也可以通过类似getHessianThreshold(),setHessianThreshold()等函数来获取或修改上述参数值,例如surf.setHessianThreshold(True)表示将HessianThreshold参数修改为True。

绘制特征点:

cv2.drawKeypoint(image, keypoints, outImage, color, flags)
或:outImage = cv2.drawKeypoint(image, keypoints, None, color, flags)

image:输入图像
keypoints:上面获取的特征点
outImage:输出图像
color:颜色,默认为随机颜色
flags:绘制点的模式,有以下四种模式
         cv2.DRAW_MATCHES_FLAGS_DEFAULT:默认值,只绘制特征点的坐标点,显示在图像上就是一个个小圆点,每个小圆点的圆心坐标都是特征点的坐标。   
         cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:绘制特征点的时候绘制的是带有方向的圆,这种方法同时显示图像的坐标,size,和方向,是最能显示特征的一种绘制方式。
         cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:只绘制特征点的坐标点,显示在图像上就是一个个小圆点,每个小圆点的圆心坐标都是特征点的坐标。   
         cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINT:单点的特征点不被绘制 

举例

程序如下:

import numpy as np
import cv2
import matplotlib.pyplot as plt
 
img = cv2.imread('test32.jpg', 0)
 
surf = cv2.xfeatures2d.SURF_create(30000)
 
kp = surf.detect(img, None)
 
img2 = cv2.drawKeypoints(img, kp, None, (255, 0, 0), 4)
 
# 不检查关键点的方向
surf.setUpright(True)
# 修改阈值
surf.setHessianThreshold(40000)
kp = surf.detect(img, None)
img3 = cv2.drawKeypoints(img, kp, None, (255, 0, 0), 4)
 
plt.subplot(121), plt.imshow(img2),
plt.title('Dstination'), plt.axis('off')
plt.subplot(122), plt.imshow(img3),
plt.title('Dstination'), plt.axis('off')
plt.show()

结果如下:
在这里插入图片描述
PS:

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页