Python数据分析之Pandas(一)

一、Pandas简介

Pandas 是 Python 语言的一个扩展程序库,用于数据分析。

Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。

Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。

Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。

Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。

Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。

二、pandas简单运用

#导库
import pandas as pd
import numpy as np
1、定义DataFrame
#DataFrame
df_DataFrame = pd.DataFrame(np.random.randn(3,4))
print(df_DataFrame)
          0         1         2         3
0  1.714211 -0.092753 -1.686740  1.580697
1  0.758850 -0.525707  2.732060 -0.888418
2  1.880706  0.977837  0.298658 -2.558101
2、定义Series
#Series
df_Series = pd.Series(np.arange(12))
print(df_Series)
0      0
1      1
2      2
3      3
4      4
5      5
6      6
7      7
8      8
9      9
10    10
11    11
dtype: int64
3、转置
#转置
df_DataFrame.T

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xVFo2IX6-1624608281841)(/Users/dc/程序员唐丁/唐丁博客/配图/转置.png)]

4、排序-按行索引
#排序-按行索引
df_DataFrame = pd.DataFrame(np.random.randn(3,4),index=['a','b','c'],columns=['A','B','C','D'])
df_DataFrame.sort_index(axis=0,ascending=False)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kZj8JVDp-1624608281847)(/Users/dc/程序员唐丁/唐丁博客/配图/排序-按行索引.png)]

5、排序-按列索引
#排序-按列索引
df_DataFrame = pd.DataFrame(np.random.randn(3,4),index=['a','b','c'],columns=['A','B','C','D'])
df_DataFrame.sort_index(axis=1,ascending=False)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JOcy7IEA-1624608281849)(/Users/dc/程序员唐丁/唐丁博客/配图/排序-按列索引.png)]

6、排序-根据值排序
#排序-根据值排序df_DataFrame = pd.DataFrame(np.random.randn(3,4),index=['a','b','c'],columns=['A','B','C','D'])df_DataFrame.sort_values(by='B')

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9vpGh82U-1624608281851)(/Users/dc/程序员唐丁/唐丁博客/配图/排序-根据值排序.png)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员唐丁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值