1601. 最多可达成的换楼请求数目
一、题目描述
我们有 n 栋楼,编号从 0 到 n - 1 。每栋楼有若干员工。由于现在是换楼的季节,部分员工想要换一栋楼居住。
给你一个数组 requests ,其中 requests[i] = [fromi, toi] ,表示一个员工请求从编号为 fromi 的楼搬到编号为 toi 的楼。
一开始 所有楼都是满的,所以从请求列表中选出的若干个请求是可行的需要满足 每栋楼员工净变化为 0 。意思是每栋楼 离开 的员工数目 等于 该楼 搬入 的员工数数目。比方说 n = 3 且两个员工要离开楼 0 ,一个员工要离开楼 1 ,一个员工要离开楼 2 ,如果该请求列表可行,应该要有两个员工搬入楼 0 ,一个员工搬入楼 1 ,一个员工搬入楼 2 。
请你从原请求列表中选出若干个请求,使得它们是一个可行的请求列表,并返回所有可行列表中最大请求数目。
示例 1:
输入:n = 5, requests = [[0,1],[1,0],[0,1],[1,2],[2,0],[3,4]]
输出:5
解释:请求列表如下:
从楼 0 离开的员工为 x 和 y ,且他们都想要搬到楼 1 。
从楼 1 离开的员工为 a 和 b ,且他们分别想要搬到楼 2 和 0 。
从楼 2 离开的员工为 z ,且他想要搬到楼 0 。
从楼 3 离开的员工为 c ,且他想要搬到楼 4 。
没有员工从楼 4 离开。
我们可以让 x 和 b 交换他们的楼,以满足他们的请求。
我们可以让 y,a 和 z 三人在三栋楼间交换位置,满足他们的要求。
所以最多可以满足 5 个请求。
示例 2:
输入:n = 3, requests = [[0,0],[1,2],[2,1]]
输出:3
解释:请求列表如下:
从楼 0 离开的员工为 x ,且他想要回到原来的楼 0 。
从楼 1 离开的员工为 y ,且他想要搬到楼 2 。
从楼 2 离开的员工为 z ,且他想要搬到楼 1 。
我们可以满足所有的请求。
示例 3:
输入:n = 4, requests = [[0,3],[3,1],[1,2],[2,0]]
输出:4
提示:
- 1 <= n <= 20
- 1 <= requests.length <= 16
- requests[i].length == 2
- 0 <= fromi, toi < n
二、思路分析
这道题我是直接看的题解,说实话是有点被困难的标签吓到了,我想了想以图的方式解决无果后就直接看题解了,官方有两种题解:1.回溯 + 枚举 2.二进制枚举。可以看到两种方法都用了枚举,由于请求数组长度不大,最大16,所以可以直接枚举所有可能。
第一种方法我觉得就是深度遍历吧。
就类似上面的在这刻二叉树,对于每一个请求,我们都可以选择接收或者不接受,所以就是两种情况,我们进行深度遍历,保存满足要求且请求数最多的方案。
第二种方法是二进制枚举,其实和前面差不多,只不过是处理方法不一样,如果我们有N个请求,则定义一个N位的二进制数,对于每一个二进制数,某一位为1的话代表接受该请求,为0 不接受,同样是记录符合要求的包含最多请求的数。
三、代码
1.回溯 + 枚举
//记录每栋楼人员进出情况
int[] enters;
//ans最终答案,temp每一个分支的结果
int ans = 0, temp = 0;
public int maximumRequests(int n, int[][] requests) {
enters = new int[n];
resolver(0,requests);
return ans;
}
//count代表第几个请求
public void resolver(int count, int[][] requests) {
//所有选择都选完了
if(count==requests.length) {
if(judge(enters) && temp > ans) {
ans = temp;
}
return;
}
//不选择该请求,直接进入下一个递归
resolver(count+1, requests);
//选择该请求,temp++,enters跳整
temp++;
enters[requests[count][0]]--;
enters[requests[count][1]]++;
resolver(count+1, requests);
//运行到这里回退了,所以之前的改变也要回退
temp--;
enters[requests[count][0]]++;
enters[requests[count][1]]--;
}
public boolean judge(int[] enters) {
for(int i=0;i< enters.length;i++) {
if(enters[i]!=0) {
return false;
}
}
return true;
}
2 . 二进制枚举
//直接用的官方题解,这熟练的位运算
还有一些方法的使用 ,例如bitCount(mask),Arrays.fill(delta, 0)
bitCount(mask):返回int型整数 i 的二进制表示中 1 的数量
关于 >>> :
>>>为逻辑右移,>>为算数右移 。算数左移右移考虑符号而逻辑右移不考虑符号,左边补0
public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
Arrays.fill(delta, 0):数组每一项都变为 后面的参数
class Solution {
public int maximumRequests(int n, int[][] requests) {
int[] delta = new int[n];
int ans = 0, m = requests.length;
for (int mask = 0; mask < (1 << m); ++mask) {
int cnt = Integer.bitCount(mask);
if (cnt <= ans) {
continue;
}
Arrays.fill(delta, 0);
for (int i = 0; i < m; ++i) {
if ((mask & (1 << i)) != 0) {
++delta[requests[i][0]];
--delta[requests[i][1]];
}
}
boolean flag = true;
for (int x : delta) {
if (x != 0) {
flag = false;
break;
}
}
if (flag) {
ans = cnt;
}
}
return ans;
}
}
break;
}
}
if (flag) {
ans = cnt;
}
}
return ans;
}
}