定义
在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
- 每个顶点出现且只出现一次。
- 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。
例如,下面这个图:
为什么会有拓扑排序?拓扑排序有何作用?
举个例子,学习java系列的教程
就比如学习java系类(部分)从java基础,到jsp/servlet,到ssm,到springboot,springcloud等是个循序渐进且有依赖的过程。在jsp学习要首先掌握java基础和html基础。学习框架要掌握jsp/servlet和jdbc之类才行。那么,这个学习过程即构成一个拓扑序列。当然这个序列也不唯一,你可以对不关联的学科随意选择顺序(比如html和java可以随便先开始哪一个。)
那上述序列可以简单表示为:
其中五种均为可以选择的学习方案,对课程安排可以有参考作用,当然,五个都是拓扑序列。只是选择的策略不同!
- 一些其他注意:
- DGA:有向无环图
- AOV网:数据在顶点 可以理解为面向对象
- AOE网:数据在边上,可以理解为面向过程!
而我们通俗一点的说法,就是按照某种规则将这个图的顶点取出来,这些顶点能够表示什么或者有什么联系。
- 规则:
- 图中每个顶点只出现一次。
- A在B前面,则不存在B在A前面的路径。(不能成环!!!!)
- 顶点的顺序是保证所有指向它的下个节点在被指节点前面!(例如A—>B—>C那么A一定在B前面,B一定在C前面)。所以,这个核心规则下只要满足即可,所以拓扑排序序列不一定唯一!
简单实现
queue<int>q;
vector<int>edge[n];
for(int i=0;i<n;i++) //n 节点的总数
if(in[i]==0) q.push(i); //将入度为0的点入队列
vector<int>ans; //ans 为拓扑序列
while(!q.empty())
{
int p=q.front(); q.pop(); // 选一个入度为0的点,出队列
ans.push_back(p);
for(int i=0;i<edge[p].size();i++)
{
int y=edge[p][i];
in[y]--;
if(in[y]==0)
q.push(y);
}
}
if(ans.size()==n)
{
for(int i=0;i<ans.size();i++)
printf( "%d ",ans[i] );
printf("\n");
}
else printf("No Answer!\n"); // ans 中的长度与n不相等,就说明无拓扑序列
算法分析及具体代码实现
对于拓扑排序,如何用代码实现呢?对于拓扑排序,虽然在上面介绍了思路和流程,很通俗易懂。但是实际上代码的实现还是很需要斟酌的,如何在空间和时间上能够得到较好的平衡且取得较好的效率?
首先要考虑存储。对于节点,首先他有联通点这么多属性。遇到稀疏矩阵还是用邻接表比较好。因为一个节点的指向节点较少,用邻接矩阵较浪费资源。具体关于邻接矩阵和邻接表的学习参见此博客
另外,如果是1,2,3,4,5,6这样的序列求拓扑排序,我们可以考虑用数组,但是如果遇到1,2,88,9999类似数据,可以考虑用map中转一下。
那么,我们具体的代码思想为:
- 新建node类,包含节点数值和它的指向(这里直接用list集合替代链表了)
- 一个数组包含node(这里默认编号较集中)。初始化,添加每个节点指向的时候同时被指的节点入度+1!(A—>C)那么C的入度+1;
- 扫描一遍所有node。将所有入度为0的点加入一个栈(队列)。
- 当栈(队列)不空的时候,抛出其中任意一个node(栈就是尾,队就是头,顺序无所谓,上面分析了只要同时入度为零可以随便选择顺序)。将node输出,并且node指向的所有元素入度减一。如果某个点的入度被减为0,那么就将它加入栈(队列)。
- 重复上述操作,直到栈为空。
这里主要是利用栈或者队列储存入度只为0的节点,只需要初次扫描表将入度为0的放入栈(队列)中。
这里你或许会问为什么。
因为节点之间是有相关性的,一个节点若想入度为零,那么它的父节点(指向节点)肯定在它为0前入度为0,拆除关联箭头。从父节点角度,它的这次拆除联系,可能导致被指向的入读为0,也可能不为0(还有其他节点指向儿子)。
#include<iostream>
#include <list>
#include <queue>
using namespace std;
/************************类声明************************/
class Graph
{
int V; // 顶点个数
list<int> *adj; // 邻接表
queue<int> q; // 维护一个入度为0的顶点的集合
int* indegree; // 记录每个顶点的入度
public:
Graph(int V); // 构造函数
~Graph(); // 析构函数
void addEdge(int v, int w); // 添加边
bool topological_sort(); // 拓扑排序
};
/************************类定义************************/
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
indegree = new int[V]; // 入度全部初始化为0
for(int i=0; i<V; ++i)
indegree[i] = 0;
}
Graph::~Graph()
{
delete [] adj;
delete [] indegree;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
++indegree[w];
}
bool Graph::topological_sort()
{
for(int i=0; i<V; ++i)
if(indegree[i] == 0)
q.push(i); // 将所有入度为0的顶点入队
int count = 0; // 计数,记录当前已经输出的顶点数
while(!q.empty())
{
int v = q.front(); // 从队列中取出一个顶点
q.pop();
cout << v << " "; // 输出该顶点
++count;
// 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈
list<int>::iterator beg = adj[v].begin();
for( ; beg!=adj[v].end(); ++beg)
if(!(--indegree[*beg]))
q.push(*beg); // 若入度为0,则入栈
}
if(count < V)
return false; // 没有输出全部顶点,有向图中有回路
else
return true; // 拓扑排序成功
}
测试如下DAG图:
int main()
{
Graph g(6); // 创建图
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
g.topological_sort();
return 0;
}
输出结果是 4, 5, 2, 0, 3, 1。这是该图的拓扑排序序列之一。
每次在入度为0的集合中取顶点,并没有特殊的取出规则,随机取出也行,这里使用的queue。取顶点的顺序不同会得到不同的拓扑排序序列,当然前提是该图存在多个拓扑排序序列。
由于输出每个顶点的同时还要删除以它为起点的边,故上述拓扑排序的时间复杂度为O(V+E)。