常数项级数
1,求数项级数和常见方式:(1)利用级数和定义,即部分和的极限(缩项法,夹逼法则)(2)转换为定积分计算(3)利用已知的级数和公式(4)利用函数项级数(特别是幂函数)的和函数计算
2,同项为抽象形式的正项级数的敛散性常见处理方法:(1)比较深敛法,比较的标准有等比,p级数,还有题目中给出的抽象级数
(2)用缩项法确定部分和是否有极限(3)确定部分和是否有上届
3,证明两个正项级数有相同的敛散性方法:常用方法为比较审敛法,证明两级数通项大小关系取决于不同的常数因子
,当直接比较通项困难时,可以选择部分和大小进行比较
4,交错级数的常见处理方法:(1)加括号+比较审敛(2)换序+和有界(一般以第一项为界限)(3)换序+莱布尼茨(4)单调性+放缩+构造缩项(5)泰勒公式+放缩性的性质(6)化为定积分化简
函数项级数
5,缺项幂级数敛散区间处理:一般用根值法和比值法来确定收敛区间。
6,分子分母的乘积因子线性组合构成常见幂级数: 例如分子分母就可以分别为 任意的常数积分因子与sinx 的泰勒展开的
(4n+1)!和(4n-3)!项。
7,函数项的项数之间的关系(项数>=3):(1)利用多重递推得到函数项的通用表达式(2)利用放缩等手段来得到压缩数列
8,函数高阶导无法直接求出的处理:(1):利用泰勒公式在f(x+h)中整理出关于hn的项数,既可以由幂级数展开式的唯一性来确定。一般应用于f(x+h)可以轻松整理出关于h的多次项函数
(2):待定系数法:设出各高阶导函数值,再通过将f(x)用泰勒公式替换来逐一反推出高阶导的系数
9,在傅立叶级数中会常常用到三角函数,注意可以使用欧拉函数的exp函数对两个三角函数进行替换
基础:正项级数收敛的必要条件+(比值审敛法,根值审敛法,比较审敛法,积分审敛法,部分和极限,部分和有界,柯西准则),几何级数,p级数,莱布尼茨准则,收敛级数乘积的柯西法则,傅立叶级数和狄利克雷收敛定理。
额外:一致收敛的M判别法(weierstrass准则),wirtinger不等式,parseval恒等式。