从零开始学数据分析之——《微积分》第七章 无穷级数

7.1 无穷级数的概念与性质

7.1.1 基本概念

设给定一个数列

                                u_{1},u_{2},\cdot \cdot \cdot ,u_{n},\cdot \cdot \cdot ,

式子

                                u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

称为无穷级数,简称级数,记作\sum_{n=1}^{\infty }u_{n},即

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

其中,第n项u_{n}称为级数的一般项或通项。

定义7.1.1 若级数\sum_{n=1}^{\infty }u_{n}的部分和数列\left \{S_{n} \right \}有极限S,即

                                \lim_{n\rightarrow \infty }S_{n}=S,

则称级数\sum_{n=1}^{\infty }u_{n}收敛,并称S是它的和,记作S = \sum_{n=1}^{\infty }u_{n}。否则,称级数\sum_{n=1}^{\infty }u_{n}发散,发散级数没有和。

显然,当级数\sum_{n=1}^{\infty }u_{n}收敛时,其部分和S_{n}时级数和S的近似值,他们之间的差

                                R_{n}=S-S_{n}=u_{n+1}+u_{n+2}+\cdot \cdot \cdot

叫做级数的余项,R_{n}也是无穷级数,用S_{n}作为S的近似值所产生的误差为\left |R_{n} \right |.

7.1.2 无穷级数的性质

性质1 若级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

收敛,其和为S,则它的每一项同乘以任意常数a后,得到级数

                                 \sum_{n=1}^{\infty }au_{n}=au_{1}+au_{2}+\cdot \cdot \cdot +au_{n}+\cdot \cdot \cdot

也收敛,其和为aS。

性质2 若级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

与级数

                                 \sum_{n=1}^{\infty }v_{n}=v_{1}+v_{2}+\cdot \cdot \cdot +v_{n}+\cdot \cdot \cdot

都收敛,其和分别为S和W,则级数

                                \sum_{n=1}^{\infty }(u_{n}\pm v_{n})=(u_{1}\pm v_{1})+(u_{2}\pm v_{2})+\cdot \cdot \cdot +(u_{n}\pm v_{n})+\cdot \cdot \cdot

也收敛,且其和为S\pm W.

性质3 若一个级数收敛,则任意加括号后所得的级数也收敛,且和不变。

性质4 在级数中去掉、加上或改变有限项,级数的敛散性不变。

性质5 (级数收敛的必要条件)如果级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

收敛,则\lim_{n \to \infty }=0.

 

7.2 正项级数 

每一项都是非负的级数称为正项级数,即如果级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

 满足条件u_{n}\geqslant 0\left ( n=1,2,\cdot \cdot \cdot \right ),则称此级数为正项级数。

定理7.2.1 (基本收敛定理)正项级数\sum_{n=1}^{\infty }u_{n}收敛的充分必要条件是其部分和数列\left \{S_{n} \right \}有界。

定理7.2.2 (比较判别法)如果两个正项级数\sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}满足关系示

                                u_{n}\leqslant v_{n},(n=1,2,3,\cdot \cdot \cdot )

那么

(1)当级数\sum_{n=1}^{\infty }v_{n}收敛时,级数\sum_{n=1}^{\infty }u_{n}也收敛

(2)当级数\sum_{n=1}^{\infty }u_{n}发散时,级数\sum_{n=1}^{\infty }v_{n}也发散

推论1\sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}都是正项级数,且存在自然数N,使当n\geqslant N时,有u_{n}\leqslant cv_{n}(c>0常数),则

(1)当级数\sum_{n=1}^{\infty }v_{n}收敛时,级数\sum_{n=1}^{\infty }u_{n}也收敛

(2)当级数\sum_{n=1}^{\infty }u_{n}发散时,级数\sum_{n=1}^{\infty }v_{n}也发散

推论2\sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}都是正项级数,且

                                \lim_{n \to \infty }\frac{u_{n}}{v_{n}}=l

(1)若0<l<\infty ,则级数\sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}同时收敛或同时发散

(2)若l=0,且级数\sum_{n=1}^{\infty }v_{n}收敛,则级数\sum_{n=1}^{\infty }u_{n}也收敛

(3)若l=+\infty,且级数\sum_{n=1}^{\infty }v_{n}发散,则级数\sum_{n=1}^{\infty }u_{n}也发散

定理7.2.3 (达朗贝尔比值判别法)若正项级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot \left (u_{n}>0,n=1,2,\cdot \cdot \cdot \right )

满足条件

                                \lim_{n \to \infty }\frac{u_{n+1}}{u_{n}}=l

(1)当l<1时,级数收敛

(2)当l>1时,级数发散

定理7.2.4 (根植判别法又称柯西判别法)设正项级数\sum_{n=1}^{\infty }u_{n}满足

                                \lim_{n \to \infty }\sqrt[n]{u_{n}}= \rho ,

(1)当\rho < 1时,级数\sum_{n=1}^{\infty }u_{n}收敛

(2)当\rho > 1时,级数\sum_{n=1}^{\infty }u_{n}发散

7.3 任意项级数 

有无穷多个正项和无穷多个负项的级数称为任意项级数。

定义7.3.1 形如

                                \sum_{n=1}^{\infty }\left ( -1 \right )^{n-1}u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+\cdot \cdot \cdot +u_{2k-1}-u_{2k}+\cdot \cdot \cdot

                                \sum_{n=1}^{\infty }\left ( -1 \right )^{n}u_{n}=-u_{1}+u_{2}-u_{3}+u_{4}-\cdot \cdot \cdot +u_{2k}-u_{2k+1}+\cdot \cdot \cdot

的任意项级数,其中,u_{n}>0,n=1,2,\cdot \cdot \cdot ,称为交错级数。

定理7.3.1 (莱布尼兹定理)若交错级数\sum_{n=1}^{\infty }\left ( -1 \right )^{n-1}u_{n}满足条件

(1)u_{n}\geqslant u_{n+1} \left ( n=1,2,3,\cdot \cdot \cdot \right )

(2)\lim_{n \to \infty }u_{n}=0

则该级数收敛,且其和S\leqslant u_{1},余项R_{n}的绝对值\left | R_{n} \right |\leqslant u_{n+1}

定理7.3.2 若级数\sum_{n=1}^{\infty }\left | u_{n} \right |收敛,则级数\sum_{n=1}^{\infty }u_{n}必收敛。

定义7.3.2 若级数\sum_{n=1}^{\infty }\left | u_{n} \right |收敛,则称级数\sum_{n=1}^{\infty }u_{n}绝对收敛;若级数\sum_{n=1}^{\infty }u_{n}收敛,而级数\sum_{n=1}^{\infty }\left | u_{n} \right |发散,则称级数\sum_{n=1}^{\infty }u_{n}条件收敛。

定理7.3.3 如果任意项级数

                                \sum_{n=1}^{\infty }u_{n}=u_{1}+u_{2}+\cdot \cdot \cdot +u_{n}+\cdot \cdot \cdot

满足条件

                                \lim_{n \to \infty }\left | \frac{u_{n+1}}{u_{n}} \right |=l

那么,当l<1时,级数\sum_{n=1}^{\infty }u_{n}(绝对)收敛;当l>1时,级数发散。

性质1 若级数\sum_{n=1}^{\infty }u_{n}绝对收敛,和为S,则任意交换此级数的各项顺序后所得级数也收敛,且和不变。

性质2 若级数\sum_{n=1}^{\infty }u_{n}\sum_{n=1}^{\infty }v_{n}都绝对收敛,它们的和分别为S与W,则它们的乘积\sum_{I,j=1}^{\infty }u_{I}v_{j}也绝对收敛,且其和为S·W。

7.4 幂级数

7.4.1 函数项级数的一般概念

设给定一个定义在区间I上的函数列

                                u_{1}(x),u_{2}(x),\cdot \cdot \cdot ,u_{n}(x),\cdot \cdot \cdot

则式子

                                u_{1}(x)+u_{2}(x)\cdot \cdot \cdot +u_{n}(x)+\cdot \cdot \cdot     (1)

叫做函数项级数,记作 \sum_{n=1}^{\infty }u_{n}(x).

若取定x=x_{0}\in I,则函数项级数(1)成为级数

                                \sum_{n=1}^{\infty }u_{n}(x_{0})=u_{1}(x_{0})+u_{2}(x_{0})+\cdot \cdot \cdot +u_{n}(x_{0})+\cdot \cdot \cdot       (2)

如果级数(2)收敛,则称x_0时函数项级数(1)的收敛点。否则,称x_0为发散点。函数项级数(1)的收敛点的全体称为函数项级数(1)的收敛域,记作D。

7.4.2 幂级数及其收敛型

函数项级数

                                \sum_{n=0}^{\infty }a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdot \cdot \cdot +a_n(x-x_0)^n+\cdot \cdot \cdot   (1)

称为(x-x_0)的幂级数,其中a_0,a_1,\cdot \cdot \cdot ,a_n,\cdot \cdot \cdot为常数,称为幂级数的系数。

x_0=0时,式(1)成为

                                \sum_{n=0}^{\infty }a_nx^n=a_0+a_1x+a_2x^2+\cdot \cdot \cdot +a_nx^n+\cdot \cdot \cdot

称为x的幂级数。

定理7.4.1 如果幂级数

                                 \sum_{n=0}^{\infty }a_nx^n=a_0+a_1x+a_2x^2+\cdot \cdot \cdot +a_nx^n+\cdot \cdot \cdot

的系数满足

                                 \lim_{n \to \infty }\left | \frac{a_{n+1}}{a_n} \right |=l,

(1)当0<l<+\infty时,收敛半径R=\frac{1}{l}

(2)当l=0时,收敛半径R=+\infty

(3)当l=+\infty时,收敛半径R=0

7.4.3 幂级数的性质

性质1 设幂级数\sum_{n=0}^{\infty }a_nx^n\sum_{n=0}^{\infty }b_nx^n的收敛半径分别为R_1(>0)R_2(>0),它们的和函数分别为S_1(x)S_2(x),则

                                \sum_{n=0}^{\infty }(a_n\pm b_n)x^n=\sum_{n=0}^{\infty }a_nx^n\pm \sum_{n=0}^{\infty }b_nx^n=S_1(x)\pm S_2(x) \left | x \right |<R

其中R\geqslant min(R_1,R_2).

性质2 设幂级数\sum_{n=0}^{\infty }a_nx^n的收敛半径R>0,其和函数为S(x),则在区间(-R,R)内,和函数S(x)是连续函数,且若幂级数在x=R(或x=-R)也收敛,则和函数S(x)在x=R(或x=-R)处左连续(或右连续)。

性质3 设幂级数\sum_{n=0}^{\infty }a_nx^n的收敛半径R>0,和函数为S(x),则S(x)在区间(-R,R)内可导,且有逐项求导公式

                                S'(x)=(\sum_{n=0}^{\infty }a_nx^n)'=\sum_{n=0}^{\infty }(a_nx^n)'=\sum_{n=1}^{\infty }na_nx^{n-1}        (1)

逐项求导后所得到幂级数\sum_{n=1}^{\infty }na_nx^{n-1}与原级数\sum_{n=0}^{\infty }a_nx^n有相同的收敛半径R。

性质4  设幂级数\sum_{n=0}^{\infty }a_nx^n的收敛半径R>0,和函数为S(x),则S(x)在区间(-R,R)内可积,且有逐项求积分公式

                                \int_{0}^{x}S(t)dt=\int_{0}^{x}\left ( \sum_{n=0}^{\infty }a_nt^n \right )dt=\sum_{n=0}^{\infty }\int_{0}^{x}a_nt^ndt=\sum_{n=0}^{\infty }\frac{a_n}{n+1}x^{n+1}    (2)

 逐项积分后得到的级数\sum_{n=0}^{\infty }\frac{a_n}{n+1}x^{n+1}与原级数\sum_{n=0}^{\infty }a_nx^n有相同的收敛半径R。

注意,如果逐项积分或逐项求导后所得的幂级数在x=R或x=-R处收敛,则在x=R或x=-R处,等式(1)和(2)仍成立。

7.5 函数的幂级数展开

7.5.1 泰勒级数

设f(x)在区间I内有任意阶导数,x_0\in I, 如果存在幂级数\sum_{n=0}^{\infty }a_n(x-x_0)^n在区间I内的和函数为f(x),即

                                f(x)=\sum_{n=0}^{\infty }a_n(x-x_0)^n, x\in I.

则称函数f(x)在区间I内可以展开称幂级数,并称\sum_{n=0}^{\infty }a_n(x-x_0)^n为f(x)在区间I内的幂级数展开式。

定理7.5.1 若函数f(x)在区间I内可展成幂级数\sum_{n=0}^{\infty }a_n(x-x_0)^n,即

                                f(x)=\sum_{n=0}^{\infty }a_n(x-x_0)^n, x\in I.

                                a_n=\frac{f^{n}(x_0)}{n!}, n=1,2,\cdot \cdot \cdot .

 定义7.5.1 设函数f(x)在x=x_0处有任意阶导数,则称幂级数

                ​​​​​​​        ​​​​​​​        \sum_{n=0}^{\infty }\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n=f(x_0)+\frac{f'(x_0)}{1!}(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdot \cdot \cdot +\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\cdot \cdot \cdot

 为函数f(x)在点x=x_0处的泰勒级数,其系数\frac{f^{(n)(x_0)}}{n!}(n=1,2,\cdot \cdot \cdot )称为泰勒系数。

定理7.5.2 设函数f(x)在区间I内有任意阶导数,x_0\in I,则函数f(x)在I内能展开成泰勒级数,即

                                f(x)=\sum_{n=0}^{\infty }\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n,x\in I.

的充要条件是

                                \lim_{n \to \infty }R_{n}(x)=0,x\in I.

其中,R_n(x)是f(x)在x=x_0点n阶泰勒公式中的余项,其拉格朗日形式为

                                R_n(x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}(x-x_0)^{n+1},\xi 介于xx_0之间。

 

7.5.2 函数的幂级数展开

将函数f(x)展开成x的幂级数\sum_{n=0}^{\infty }\frac{f^{(n)}(0)}{n!}x^n,可以按下列步骤进行:

第一步:求出函数fx)及其各阶导数在x=0处的值:

                                f(0),f'(0),f''(0),\cdot \cdot \cdot ,f^{(n)}(0),\cdot \cdot \cdot

如果f(x)在x=0处某阶导数不存在,则f(x)不能展成x的幂级数。

第二步:写出幂级数

                \sum_{n=0}^{\infty }x^n=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdot \cdot \cdot +\cdot \cdot \cdot,

并求出其收敛域I。

第三步:考察在收敛域I内余项R_n(x)的极限

                \lim_{n \to \infty }R_n(x)=\lim_{n \to \infty }\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}(0<\theta <1)

是否为零。如果\lim_{n \to \infty }R_n(x)=0,则函数f(x)在收敛域I内可以展成x的幂级数,即

                 f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdot \cdot \cdot +\cdot \cdot \cdot,x\in I.

否则,f(x)在I内不能展成x的幂级数。

 

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值