简单DP(背包问题(9个))

1.01背包问题

01背包经典例题:
N 件物品一个容量是 V 的背包每件物品只能使用一次
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

朴素版解法:二维空间解法

**每件物品只能选一次,对于每种物品,我们有两种选择
1.不选 -> dp[i][j]=dp[i-1][j]
等于选前i-1个物品,空间为j情况下的最优解
2.选 -> dp[i][j]=dp[i-1][j-v[i]]+w[i]
如果选的话,前i-1个物品的体积最多为j-v[i]
**

在这两种情况中取较大值即可,即为当前情况的最优解,我们的每一步都是从上一步的最优解转移过来,所以可以保证最后的结果一定是最优解

板子

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1005;
int dp[maxn][maxn];//dp[i][j]表示前i个商品,背包容量是j的情况下的最大价值
int w[maxn];
int v[maxn];
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i = 1;i <= n;i++)
  scanf("%d%d",&v[i],&w[i]);
 for(int i = 1;i <= n;i++){
  for(int j = 0;j <= m;j++){
   dp[i][j] = dp[i - 1][j];
   if(j >= v[i])
    dp[i][j] = max(dp[i][j],dp[i-1][j- v[i]] + w[i]);
  }
 }
 printf("%d\n",dp[n][m]);
 return 0;
}

解法二:滚动数组优化:(实际上只需要一个数组)

状态转移每次只与上一层有关,所以用一个一维数组就可以

转移方程:dp[i]=max(dp[i],dp[i-v[i]]+w[i])
其实就相当于二维中的 dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i])

所以第二层循环需要从大到小循环因为若是继续从小到大循环,后面算的时候,用的是这一层已经算过的数据,就变成dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]) ,(这正好是完全背包一维的解法,每个物品可以选无限次)而从大到小算的话一定用的是上一层的状态

板子:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1005;
int dp[maxn];
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 int v,w;
 for(int i = 1;i <= n;i++){
  scanf("%d%d",&v,&w);
  for(int j = m;j >= v;j--){
   dp[j] = max(dp[j],dp[j - v] + w);
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

注:这时的dp[i]表示空间<=i的最大价值,所以最后直接输出dp[m]即可,这与初始化有关,因为dp数组在主函数外定义,初始值均为0,所以如果存在一个k<m 使得空间最大为k的情况下dp[k]有最大价值,那么dp[m]一定可以从k这个状态转移过来—即dp[m]一定是最大值。

若题目要求装满背包,即将物品恰装入一个容量为m的背包中,只需要将初始化条件改一改即可,----将dp数组初始化为负无穷,dp[0]=0,即可确保状态一定是从0转移过来的。

2.完全背包问题

N 种物品一个容量是 V 的背包每种物品都有无限件可用
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包可使这些**物品的总体积不超过背包容量,且总价值最大。**输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

朴素版解法:二维空间解法

也是两种选择,选或不选,只不过每个物品可以选无限次,在01的基础上把
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i])
改为
dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i])即可

板子

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1005;
int dp[maxn][maxn];
int w[maxn];
int v[maxn];
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i = 1;i <= n;i++)
  scanf("%d%d",&v[i],&w[i]);
 for(int i = 1;i <= n;i++){
  for(int j = 0;j <= m;j++){
   dp[i][j] = dp[i - 1][j];
   if(j >= v[i])
    dp[i][j] = max(dp[i][j],dp[i][j- v[i]] + w[i]);
  }
 }
 printf("%d\n",dp[n][m]);
 return 0;
}

优化空间版解法:
转移方程为dp[j]=max(dp[j],dp[j-v[i]]+w[i])
第二层从小到大循环,原因参见01的一维

板子:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1005;
int dp[maxn];
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 int v,w;
 for(int i = 1;i <= n;i++){
  scanf("%d%d",&v,&w);
  for(int j = v;j <= m;j++){
   dp[j] = max(dp[j],dp[j - v] + w);
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

3.多重背包问题

有 N 种物品和一个容量是 V 的背包。
**第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。**求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。
数据范围
0<N,V≤100(小数据范围)
0<vi,wi,si≤100
入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

思路:是01背包的延伸,就不说二维做法了,跟上面差不多。直接贴一维做法。
01背包是选或不选
dp[j]=max(dp[j],dp[j-v[i]]+w[i])
多重背包是选0个,1个,2个…s[i]个
即dp[j]=max(dp[j],dp[j - v[i] * k]+w[i] * k)
k=1,2,3,…s[i]
那么再加一层循环表示选多少个就可以了
因为是01背包的扩展,所以第二层循环应从大到小循环

板子:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int dp[maxn];
int main(){
 int n,m;
 int v[maxn],w[maxn],s[maxn];
 scanf("%d%d",&n,&m);
 for(int i = 1;i <= n;i++){
  scanf("%d%d%d",&v[i],&w[i],&s[i]);
 }
 memset(dp,0,sizeof(dp));
 for(int i = 1;i <= n;i++){
  for(int j = m;j >= v[i];j--){
   for(int k = 1;k <= s[i];k++){
    if(j >= k * v[i])
     dp[j] = max(dp[j],dp[j - k * v[i]] + k * w[i]);
     else break;
   }
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

方法二:二进制优化做法:

有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000(大数据范围)
0<V≤2000
0<vi,wi,si≤2000
提示

本题考查多重背包的二进制优化方法。
输入样例
4 5
1 2
2 4 1
3 4 3
4 5 2
输出样例:
10

**思路:**这道题的数据范围如果用三层循环的话是达到了1e9,所以必须优化它。其实可以把它转化为一个01背包的问题。每个物品有s件,我们可以把它差分成s份,每份物品当做不同的个体,即只能选一次,这就转化为了01背包物品,但是这样的话,物品个数变成了1000*2000=2e6,再循环一层空间的话,还是1e9的复杂度。

那么继续优化,一个物品的数量是s的话,只要把s拆分成一些数字,使它们能够表示出1-s中任意一个数字,就可以,没必要把它拆成s个1。

那么这样的数字最少需要多少个呢?****最少要log(s)个,向上取整

比如7,它最少需要3个数字来表示:

即 1(2^0=1 ), 2(2^1=2), 4(2^2=4)。

原因:每个数字有2种可能选或不选,那么可以表示的不同数字个数就是 2 * 2 * 2 = 8。但是还需要注意一个问题,就是有些数字可能能够表示出来一些大于s的数字,但是这件物品最多只有s件,那么就需要特殊处理一下最后一个数。

比如10,若用1,2, 4, 8表示,可能会表示出来大于10的数字,例如:4+8=12。那么如果最后一个数字加上前面数的总和会大于s,就将它替换为剩下的物品个数,即将8替换为3,这时正好能表示出1-s所有的数,-> 1, 2,4可以表示7以内的所有数,这些数加上3就可以表示10以内的所有数啦。

注:如果拆分成log(s)个的话,时间复杂度就变为1000 * log(2000) * 2000 = 2e7,是可以通过的~

板子:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int dp[maxn];
int v[maxn],w[maxn];//注意数据范围确定是int还是long long
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 int vv,ww,s;
 int  k = 1;
 for(int i = 1;i <= n;i++){
  scanf("%d%d%d",&vv,&ww,&s);
  for(int i = 1;i <= s;i = i * 2){
   // 二进制每一位枚举.
   //注意要从小到大拆分
   v[k] = vv  * i;//合成一个大的物品的体积
   w[k] = ww * i;//合成一个大的物品的价值
   k++;
   s = s - i;//减去拆分出来的
  }
  if(s){
   /*判断是否会有余下的部分.
    就好像我们某一件物品为13,显然拆成二进制为1,2,4.
    我们余出来的部分为6,所以需要再来一份.*/
   v[k] = vv * s;
   w[k] = ww * s;
   k++;
  }
 }
 for(int i = 1;i < k;i++){
  for(int j = m;j >= v[i];j--){
   dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

题目三:多重背包终极版
在这里插入图片描述
所谓的look 哈哈哈!!

4.混合背包问题

有 N 种物品和一个容量是 V 的背包。
物品一共有三类:
第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);
每种****体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
si=−1 表示第 i 种物品只能用1次;
si=0 表示第 i 种物品可以用无限次;
si>0 表示第 i 种物品可以使用 si 次;

输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000−1

输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8

**思路:**是一个前三种背包问题的综合,如果明白了前面的,就很简单了,只需要判断一下类型,如果是多重背包,将它转换为01背包插入数组当中,然后按着不同类型的处理方式去遍历空间大小即可。

板子:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int dp[maxn];
int v[maxn],w[maxn],s[maxn];//注意数据范围确定是int还是long long
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 for(int i = 1;i <= n;i++){
  scanf("%d%d%d",&v[i],&w[i],&s[i]);
  if(s[i] == -1) s[i] = 1;01背包相当于物品件数为1的多重背包
 }
 for(int i = 1;i <= n;i++){
  if(s[i] == 0){//完全背包,按照完全背包的方式,从小到大枚举体积
   for(int j = v[i];j <= m;j++){
    dp[j] = max(dp[j],dp[j - v[i]] + w[i]);
   }
  }
  else{//多重背包进行二进制优化
   for(int k = 1;k <= s[i];s[i] -= k,k *= 2){
    for(int j = m;j >= k * v[i];j--){
     dp[j] = max(dp[j],dp[j - k * v[i]] + k * w[i]);
    }
   }
   for(int j = m;j >= s[i] * v[i];j--){
    dp[j] = max(dp[j],dp[j - s[i] * v[i]] + s[i] * w[i]);
   }
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

5. 二维费用的背包问题

(升级版01背包)换句话说只是在01背包的基础上多了一层限制

有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。
每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。求
解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V, M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。
接下来有 N 行,每行三个整数 vi,mi,wi,用空格隔开,分别表示第 i 件物品的体积、重量和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V,M≤100
0<vi,mi≤100
0<wi≤1000
输入样例
4 5 6
1 2 3
2 4 4
3 4 5
4 5 6
输出样例:
8

**思路:**这个题也很简单,就是在01背包的基础上加了一维重量,枚举的时候多一层循环就行了。因为是01背包的变形,所以重量和体积枚举的时候都从大到小枚举。****(需要注意的是有时候并不是01背包,也有可能是完全背包)

在这里插入图片描述
题目中明确指出每种怪有无数个————>完全背包

板子:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int dp[maxn][maxn];
int main(){
 int n,V,M;
 int v,w,m;
 scanf("%d%d%d",&n,&V,&M);
 for(int i = 1;i <= n;i++){
  scanf("%d%d%d",&v,&m,&w);
  for(int j = V;j >= v;j--){
   for(int k = M;k >= m;k--){
    dp[j][k] = max(dp[j][k],dp[j - v][k - m] + w);
   }
  }
 }
 printf("%d\n",dp[V][M]);
 return 0;
}

6. 分组背包问题

N 组物品和一个容量是 V 的背包。
每组物品有若干个同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;

输出格式

输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8

思路:和多重背包有一些类似,多重背包是每个物品有si件,可以选0,1,2…si件。而分组背包是不选,选第1个,或第2个或第3个…或第si个,都有si+1种决策方式,即使用三层循环即可解决。没有优化方式。
板子:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int dp[maxn];
int v[maxn],w[maxn];
int main(){
 int n,m,s;
 scanf("%d%d",&n,&m);
 for(int i = 1;i <= n;i++){
  scanf("%d",&s);
  for(int k = 1;k <= s;k++)
   scanf("%d%d",&v[k],&w[k]);
  for(int j = m;j >= 0;j--){
   for(int k = 1;k <= s;k++){
    if(j >= v[k]) dp[j] = max(dp[j],dp[j - v[k]] + w[k]);
   }
  }
 }
 printf("%d\n",dp[m]);
 return 0;
}

7. 有依赖的背包问题

有 N 个物品和一个容量是 V 的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。

如下图所示:
在这里插入图片描述

如果选择物品5,则必须选择物品1和2。这是因为2是5的父节点,1是2的父节点。
每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N1…N。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式
第一行有两个整数 N,V用空格隔开,分别表示物品个数和背包容量。
接下来有 N 行数据,每行数据表示一个物品。
第 i行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。
数据保证所有物品构成一棵树。

输出格式
输出一个整数,表示最大价值。

数据范围
1≤N,V≤100
1≤vi,wi≤100
父节点编号范围:
内部结点:1≤pi≤N;
根节点 pi=−1;

输入样例
5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2
输出样例:
11

思路:其实有依赖的背包问题和树形dp很类似,它把树形dp和分组背包结合到了一起。

选一个物品必须要选择它的父节点,那么反过来,父节点选择子节点,一定会选择价值最大的那一分支。那么就可以先递归算出子树的每一个体积对应的最大价值,然后进行分组背包,求出最大值即可。

需要注意的是,我们选择了子节点,就必须选择当前节点,那么最后需要把父节点的位置空出来。(把所有已算完的体积更新一下,在里面加上父节点这一物品)

8.背包问题求方案数

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。------>(01背包)
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最优选法的方案数。注意答案可能很大,请输出答案模 10^9+7 的结果。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i件物品的体积和价值。

输出格式
输出一个整数,表示方案数 模 10^9+7的结果。

数据范围
0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 6
输出样例:
2

思路:在原来01背包的基础上加一个表示方案数的数组即可。注意初始化,如果只把num[0]赋值成1,那么需要把对应的01背包转化为体积恰好是j的情况下的最大价值。最后找出最大价值,将此价值对应的所有体积的方案数加上即可。

9. 背包问题求具体方案

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。-------->01背包
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出字典序最小的方案。这里的**字典序是指:所选物品的编号所构成的序列。**物品的编号范围是 1…N。

输入格式
第一行两个整数,N,V 用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。
物品编号范围是 1…N。

数据范围
0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 6

输出样例:
1 4
思路:因为方案可能有很多种,题目要求输出字典序最小的,那么就倒着枚举物品种类,贪心思想,确保序号小的能优先选择。最后输出一下可行的转移路径就行了。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值