线段上的格点数(GCD)

本文介绍了如何使用辗转相除法解决线段上格点数的问题。给定平面上两点p1(x1, y1)和p2(x2, y2),线段p1p2上(不包括端点)的格点数可以通过计算(x2-x1)和(y2-y1)的最大公约数GCD减1得到。当两点重合时,输出0。并提供了具体的代码实现。" 97622350,797488,TMMi 2级:测试方针与策略制定,"['测试过程改进', '质量管理', '测试管理']
摘要由CSDN通过智能技术生成

题意:

给定平面上的两个格点(整数点)p1(x1,y1),p2(x2,y2) 线段p1p2上,除p1和p2以外一共有多少个格点?

限制条件:-10^9 <=x1,x1,y1,y1<=10^9

输入:p1(1,11) p2(5,3)

输出:3

思路:

辗转相除法答案就是gcd(abs(x1-x2),abs(y1-y2))-1,为什么可以这样做呢? 仔细想想,求出最大公约数g,也就是把y分为g个部分组成,x也是g个部分组成,这样的话,

从起点开始,每次横坐标和纵坐标分别增加相应的一部分,一直增到终点,这个过程就是模拟的过程。。。 如果要包括端点的话就是以上+2了。。但是要有个特判,当两个点在同一位置时输出0

代码实现:

#include<cstdio>
#include<cstring>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值