题意:
1461 稳定桌
1.0 秒 131,072.0 KB 80 分 5级题
有一张桌子,有n个腿。第i根腿的长度是li。
现在要拿掉一些腿,使得桌子稳定,拿掉第i根腿需要di的能量。
稳定的条件是,假如拿掉若干条腿之后,桌子还有k个腿,那么长度最长的腿的数目要超过一半。比如桌子有5根腿,那么至少要有三根腿是最长的。另外,只有一根腿的桌子是稳定的,两个腿的桌子想要稳定,必需长度是一样的。
你的任务是拿掉若干腿,使得桌子稳定,并且所消耗的能量要最少。
输入
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 10^5),表示刚开始桌子腿的数目。
第二行包含n个整数li (1 ≤ li ≤ 10^5),表示第i个腿的长度。
第三行包含n个整数 di (1 ≤ di ≤ 10^5),表示拿掉第i个腿所消耗的能量。
输出
输出使得桌子稳定所消耗的最少能量。
输入样例
6
2 2 1 1 3 3
4 3 5 5 2 1
输出样例
8
思路:
权值线段树。。。
关于权值线段树,之前只是听说过,但是从来没写过相关的题目,这次是我第一次写权值线段树,感觉和普通线段树区别不大,只是权值线段树记录的是值的个数而已。。。
而且通过这道题,我也学会了怎么动态开点。。。
正解:
首先我们是明确目的,是要使得最长的桌腿的数量超过总数的一半,而且要使花费最小。
(1)把每个花费都存入权值线段树中。
(2)将每个桌腿都当作最大值时满足要求的花费,然后取min
代码实现:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn = 2e5 + 5;
int n;
int l[maxn];
int d[maxn];
vector<int>G[maxn];
int s[maxn];
ll sum[maxn << 2];
int num[maxn << 2];
int cnt[maxn];
ll res = 1e18;
void change(int k,int l,int r,int x,int v){//动态开点线段树
if(l == r){
sum[k] += x * v;
num[k] += v;
return ;
}
int mid = (l + r) >> 1;
if(x <= mid) change(k<<1,l,mid,x,v);
else change(k<<1|1,mid+1,r,x,v);
sum[k] = sum[k<<1] + sum[k<<1|1];
num[k] = num[k<<1] + num[k<<1|1];
}
ll ask(int k,int l,int r,int need){
if(l == r){
return need * l;
}
int mid = (l + r) >> 1;
if(num[k<<1]>=need) return ask(k<<1,l,mid,need);
else return sum[k<<1]+ask(k<<1|1,mid+1,r,need-num[k<<1]);
}
int main(){
scanf("%d",&n);
for(int i = 1;i <= n;i++)//桌腿的长度
scanf("%d",&l[i]);
for(int i = 1;i <= n;i++){//花费
scanf("%d",&d[i]);
G[l[i]].push_back(d[i]);
s[l[i]] += d[i];
change(1,1,1e5,d[i],1);//权值线段树,因为记录了num[k]
cnt[l[i]]++;//标记长度为l[i]的桌腿是存在的
}
int now = n; ll tmp = 0;
for(int i = 1e5;i >= 1;i--){
if(!cnt[i]) continue;//长度为i的桌腿不存在
for(int j = 0;j < G[i].size();j++){
change(1,1,1e5,G[i][j],-1);//i作为最大值d[i]要保留下来
}
int need = now - cnt[i] * 2 + 1;
if(need <= 0){//不需要删了
res = min(res,tmp);
now = now - cnt[i];
continue;
}
res= min(res,tmp + ask(1,1,1e5,need));//查询需要删掉最小的need个花费
now = now - cnt[i];//现在只剩下now个桌腿了
tmp += s[i];//继续比较
}
printf("%lld\n",res);
return 0;
}