51nod稳定桌 1461

题意:

1461 稳定桌
1.0 秒 131,072.0 KB 80 分 5级题
有一张桌子,有n个腿。第i根腿的长度是li。

现在要拿掉一些腿,使得桌子稳定,拿掉第i根腿需要di的能量。

稳定的条件是,假如拿掉若干条腿之后,桌子还有k个腿,那么长度最长的腿的数目要超过一半。比如桌子有5根腿,那么至少要有三根腿是最长的。另外,只有一根腿的桌子是稳定的,两个腿的桌子想要稳定,必需长度是一样的。

你的任务是拿掉若干腿,使得桌子稳定,并且所消耗的能量要最少。

输入
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 10^5),表示刚开始桌子腿的数目。
第二行包含n个整数li (1 ≤ li ≤ 10^5),表示第i个腿的长度。
第三行包含n个整数 di (1 ≤ di ≤ 10^5),表示拿掉第i个腿所消耗的能量。
输出
输出使得桌子稳定所消耗的最少能量。
输入样例
6
2 2 1 1 3 3
4 3 5 5 2 1
输出样例
8

思路:

权值线段树。。。

关于权值线段树,之前只是听说过,但是从来没写过相关的题目,这次是我第一次写权值线段树,感觉和普通线段树区别不大,只是权值线段树记录的是值的个数而已。。。

而且通过这道题,我也学会了怎么动态开点。。。

正解:
首先我们是明确目的,是要使得最长的桌腿的数量超过总数的一半,而且要使花费最小。

(1)把每个花费都存入权值线段树中。

(2)将每个桌腿都当作最大值时满足要求的花费,然后取min

代码实现:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn = 2e5 + 5;

int n;
int l[maxn];
int d[maxn];
vector<int>G[maxn];
int s[maxn];
ll sum[maxn << 2];
int num[maxn << 2];
int cnt[maxn];
ll res = 1e18;

void change(int k,int l,int r,int x,int v){//动态开点线段树
	if(l == r){
		sum[k] += x * v;
		num[k] += v;
		return ;
	}
	int mid = (l + r) >> 1;
	if(x <= mid) change(k<<1,l,mid,x,v);
	else change(k<<1|1,mid+1,r,x,v);
	sum[k] = sum[k<<1] + sum[k<<1|1];
	num[k] = num[k<<1] + num[k<<1|1];
}

ll ask(int k,int l,int r,int need){
	if(l == r){
		return need * l;
	}
	int mid = (l + r) >> 1;
	if(num[k<<1]>=need) return ask(k<<1,l,mid,need);
	else return sum[k<<1]+ask(k<<1|1,mid+1,r,need-num[k<<1]);
}

int main(){
	scanf("%d",&n);
	for(int i = 1;i <= n;i++)//桌腿的长度
		scanf("%d",&l[i]);
	for(int i = 1;i <= n;i++){//花费
		scanf("%d",&d[i]);
		G[l[i]].push_back(d[i]);
		s[l[i]] += d[i];
		change(1,1,1e5,d[i],1);//权值线段树,因为记录了num[k]
		cnt[l[i]]++;//标记长度为l[i]的桌腿是存在的
	}
	int now = n; ll tmp = 0;
	for(int i = 1e5;i >= 1;i--){
		if(!cnt[i]) continue;//长度为i的桌腿不存在
		for(int j = 0;j < G[i].size();j++){
			change(1,1,1e5,G[i][j],-1);//i作为最大值d[i]要保留下来
		}
		int need = now - cnt[i] * 2 + 1;
		if(need <= 0){//不需要删了
			res = min(res,tmp);
			now = now - cnt[i];
			continue;
		}
		res= min(res,tmp + ask(1,1,1e5,need));//查询需要删掉最小的need个花费
		now = now - cnt[i];//现在只剩下now个桌腿了
		tmp += s[i];//继续比较
	}
	printf("%lld\n",res);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值