AdaBoost(Adaptive Boosting)算法

一、概念

AdaBoost(自适应提升)是一种集成学习(Ensemble Learning)算法,属于Boosting家族。其核心思想是:通过迭代训练一系列“弱分类器”(性能略优于随机猜测,如决策树桩),并根据每个弱分类器的表现赋予不同权重,最终将它们加权组合成一个“强分类器”

“自适应”体现在:每个弱分类器训练时,会自适应地调整样本权重——前一个分类器错分的样本权重会被放大,使得下一个分类器更关注这些难分样本,从而逐步提升整体性能。

二、核心理论

AdaBoost的工作流程可概括为4步迭代过程:

  1. 初始化样本权重:所有样本初始权重相等(如 wi=1/Nw_i = 1/Nw
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值