域定义
定义R为系数在环 Z 13 Z_{13} Z13上的一元多项式类型,文字为x
R.<x> = Zmod(13)[]
定义在 F 2 4 = Z 2 [ x ] f ( x ) F_{2^4} =Z_2[x]_{f(x)} F24=Z2[x]f(x)上,其中 f ( x ) = x 4 + x + 1 f(x)=x^4+x+1 f(x)=x4+x+1,文字为x
#第一个参数声明域所在空间;modulus后的列表为多项式f(x)从最高次到0次项的系数列表
K.<x> = GF(2^4, modulus=[1, 0, 0, 1, 1])
更换多项式所在环
# 将f的环改为QQ
f.change_ring(QQ)
次数
f.degree()
带入求值
f(7)
幂运算
f^3
求最高公因式
f.gcd(x^2+1) #即求gcd(f, x^2+1)

扩展欧几里得除法
f.xgcd(x^2+1)

带余除法
f.quo_rem(x^2+1)

模运算
f%(x^2+1)

整除
f//(x^2+1)

判断是否可约
不可约为True;可约为False
f.is_irreducible()
因式分解
f.factor()

求根
输出[a, n]表示,有根a,个数为n个(即该算法可求出重根)
f.roots()

求阶
# 求x的阶为多少
K.<x>=GF(2^4,modulus=[1,1,1,1,1])
g=x
g.multiplicative_order()

求循环群
4种置换自同构
RR.<X> = QQ[]
f = x^4 + 3*x^2 + 1
f.galois_group()
