灵感来源于肖老师《高等代数》第一堂课和某个数学分析题.
一、求法本身
先来说下
n
n
n 次单位根的定义,满足下式的
z
z
z 就是
n
n
n 次单位根.
z
n
=
1
z^n=1
zn=1 A:哈?这还需要求?不就是
1
1
1 吗?
B:你再好好想想.
A:emm,好吧,
1
1
1 只是其中的一个,其他的求起来感觉有点儿困难. 不过四次以上的方程没有一般的求根公式,该怎么求呢?
B:不要把问题想得那么宽泛,我们只是想求这个方程的根而已,对其他同次方程不感兴趣.
根据代数学基本定理, n n n 次复系数多项式方程在复数域内有且只有 n n n 个根(重根按重数计算).
好,目标范围已锁定,在复数域.
众所周知(不知的暂且假装知道),复数可以表示成以下形式
z
=
R
e
i
θ
=
R
cos
θ
+
i
R
sin
θ
R
≥
0
z=R\,e^{i\theta}=R\cos\theta+iR\sin\theta\quad R\geq 0
z=Reiθ=Rcosθ+iRsinθR≥0其中
R
\small R
R 表示模长,
θ
\small \theta
θ 表示辐角.
两个复数 z 1 , z 2 z_1,\,z_2 z1,z2 相等,当且仅当 R 1 = R 2 , θ 1 = θ 2 + 2 k π , k ∈ Z \small R_1=R_2,\,\theta_1=\theta_2+2k\pi,k\in Z R1=R2,θ1=θ2+2kπ,k∈Z.
1
1
1 可以表示为
1
=
1
e
i
0
1=1 e^{i0}
1=1ei0,将这两个式子代入方程
z
n
=
1
z^n=1
zn=1,得
R
n
⋅
e
i
n
θ
=
1
⋅
e
i
0
R^n\cdot e^{in\theta}=1\cdot e^{i0}
Rn⋅einθ=1⋅ei0则有
R
n
=
1
,
n
θ
=
2
k
π
R
≥
0
,
k
∈
Z
R^n=1,\,n\theta=2k\pi\quad R\geq 0,k\in Z
Rn=1,nθ=2kπR≥0,k∈Z解得
R
=
1
,
θ
=
2
k
π
/
n
,
k
∈
Z
\small R=1,\theta=2k\pi/n,k\in Z
R=1,θ=2kπ/n,k∈Z,则
z
=
e
i
2
k
π
n
,
k
∈
Z
\small z=e^{i\frac{2k\pi}{n}},k\in Z
z=ein2kπ,k∈Z.
A:你不是说只有
n
n
n 个根吗?
k
∈
Z
\small k\in Z
k∈Z 你怎么解释?
B:且看分析.
先取
k
=
1
,
2
,
⋯
,
n
\small k=1,2,\cdots,n
k=1,2,⋯,n,这样可以得到
n
n
n 个根.
再取
k
=
n
+
1
\small k=n+1
k=n+1 ,你会发现
e
i
2
k
π
n
=
e
i
2
(
n
+
1
)
π
n
=
e
i
(
2
π
n
+
2
π
)
=
e
i
2
π
n
\small e^{i\frac{2k\pi}{n}}=e^{i\frac{2(n+1)\pi}{n}}=e^{i(\frac{2\pi}{n}+2\pi)}=e^{i\frac{2\pi}{n}}
ein2kπ=ein2(n+1)π=ei(n2π+2π)=ein2π,与
k
=
1
\small k=1
k=1 时的情况是一样的.
同理,取
k
=
n
+
2
,
n
+
3
,
⋯
\small k=n+2,n+3,\cdots
k=n+2,n+3,⋯、
k
=
0
,
−
1
,
−
2
,
⋯
\small k=0,-1,-2,\cdots
k=0,−1,−2,⋯,也是如此,即
k
+
m
n
,
(
m
∈
Z
,
k
=
1
,
2
,
⋯
,
n
)
\small k+mn,(m\in Z,k=1,2,\cdots,n)
k+mn,(m∈Z,k=1,2,⋯,n) 与
k
\small k
k 是一样的,都是原本
n
n
n 个根的重复再现.
所以知道了吧,的确是 n n n 个根 : z k = e i 2 k π n , k = 1 , 2 , ⋯ , n \small z_k=e^{i\frac{2k\pi}{n}},k=1,2,\cdots,n zk=ein2kπ,k=1,2,⋯,n,在复平面中表示就是这样(圆心为原点,半径为1):
n = 1 n=1 n=1

n = 2 n=2 n=2

n = 3 n=3 n=3

n = 4 n=4 n=4

n = 5 n=5 n=5

n = 6 n=6 n=6


二、额外拾遗
将复根
z
k
z_k
zk 看作基
(
1
,
i
)
(1,i)
(1,i) 下的二维坐标,考虑其和.
∑
k
=
1
n
z
k
=
∑
k
=
1
n
e
i
2
k
π
n
=
∑
k
=
1
n
(
cos
2
k
π
n
+
i
sin
2
k
π
n
)
=
(
1
,
i
)
∑
k
=
1
n
(
cos
2
k
π
n
,
sin
2
k
π
n
)
T
\sum_{k=1}^n z_k=\sum_{k=1}^ne^{i\frac{2k\pi}{n}}=\sum_{k=1}^n \left(\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n} \right)=(1,i)\sum_{k=1}^n\big(\cos\frac{2k\pi}{n},\sin\frac{2k\pi}{n}\big)^T
k=1∑nzk=k=1∑nein2kπ=k=1∑n(cosn2kπ+isinn2kπ)=(1,i)k=1∑n(cosn2kπ,sinn2kπ)T
将
{
e
i
2
k
π
n
}
\{e^{i\frac{2k\pi}{n}}\}
{ein2kπ} 看作是等比数列,则
∑
k
=
1
n
e
i
2
k
π
n
=
e
i
2
π
n
(
1
−
e
i
2
π
n
n
)
1
−
e
i
2
π
n
=
e
i
2
π
n
(
1
−
e
i
2
π
)
1
−
e
i
2
π
n
\sum_{k=1}^ne^{i\frac{2k\pi}{n}}=\frac{e^{i\frac{2\pi}{n}}(1-e^{i\frac{2\pi}{n}n})}{1-e^{i\frac{2\pi}{n}}}=\frac{e^{i\frac{2\pi}{n}}(1-e^{i2\pi})}{1-e^{i\frac{2\pi}{n}}}
k=1∑nein2kπ=1−ein2πein2π(1−ein2πn)=1−ein2πein2π(1−ei2π)而
1
−
e
i
2
π
=
1
−
(
cos
(
2
π
)
+
i
sin
(
2
π
)
)
=
0
1-e^{i2\pi}=1-(\cos(2\pi)+i\sin(2\pi))=0
1−ei2π=1−(cos(2π)+isin(2π))=0,则
(
1
,
i
)
∑
k
=
1
n
(
cos
2
k
π
n
,
sin
2
k
π
n
)
T
=
∑
k
=
1
n
e
i
2
k
π
n
=
0
(1,i)\sum_{k=1}^n\big(\cos\frac{2k\pi}{n},\sin\frac{2k\pi}{n}\big)^T=\sum_{k=1}^ne^{i\frac{2k\pi}{n}}=0
(1,i)k=1∑n(cosn2kπ,sinn2kπ)T=k=1∑nein2kπ=0
∑
k
=
1
n
(
cos
2
k
π
n
,
sin
2
k
π
n
)
=
(
0
,
0
)
\sum_{k=1}^n(\cos\frac{2k\pi}{n},\sin\frac{2k\pi}{n})=(0,0)
k=1∑n(cosn2kπ,sinn2kπ)=(0,0)所以,这
n
n
n 个二维向量之和为
0
→
\small \overrightarrow{0}
0,这便是我想说的结论.
还有一种比较直观的做法,这些向量可以拼成一个首尾相接的正 n n n 边形,所以其和为 0 → \small \overrightarrow{0} 0.
以及一种不直观的做法——积化和差.
2
sin
(
θ
2
)
∑
k
=
1
n
sin
(
k
θ
)
=
∑
k
=
1
n
2
sin
(
k
θ
)
sin
(
θ
2
)
=
∑
k
=
1
n
(
cos
(
(
k
−
1
2
)
θ
)
−
cos
(
(
k
+
1
2
)
θ
)
)
=
∑
k
=
1
n
cos
(
(
k
−
1
2
)
θ
)
−
∑
k
=
2
n
+
1
cos
(
(
k
−
1
2
)
θ
)
=
cos
(
θ
2
)
−
cos
(
(
n
+
1
2
)
θ
)
∑
k
=
1
n
sin
(
k
θ
)
=
cos
(
θ
2
)
−
cos
(
θ
2
+
n
θ
)
2
sin
(
θ
2
)
\begin{aligned} 2\sin\big(\frac{\theta}{2}\big)\sum_{k=1}^n\sin(k\theta)&=\sum_{k=1}^n2\sin(k\theta)\sin(\frac{\theta}{2})\\&=\sum_{k=1}^n\Big(\cos\big((k-\frac{1}{2})\theta\big)-\cos\big((k+\frac{1}{2})\theta\big)\Big)\\&=\sum_{k=1}^n\cos\big((k-\frac{1}{2})\theta\big)-\sum_{k=2}^{n+1}\cos\big((k-\frac{1}{2})\theta\big)\\&=\cos\big(\frac{\theta}{2}\big)-\cos\big((n+\frac{1}{2})\theta\big)\\ \sum_{k=1}^n\sin(k\theta)&=\frac{\displaystyle\cos\big(\frac{\theta}{2}\big)-\cos\big(\frac{\theta}{2}+n\theta\big)}{\displaystyle2\sin\big(\frac{\theta}{2}\big)} \end{aligned}
2sin(2θ)k=1∑nsin(kθ)k=1∑nsin(kθ)=k=1∑n2sin(kθ)sin(2θ)=k=1∑n(cos((k−21)θ)−cos((k+21)θ))=k=1∑ncos((k−21)θ)−k=2∑n+1cos((k−21)θ)=cos(2θ)−cos((n+21)θ)=2sin(2θ)cos(2θ)−cos(2θ+nθ)
2
sin
(
θ
2
)
∑
k
=
1
n
cos
(
k
θ
)
=
∑
k
=
1
n
2
sin
(
θ
2
)
cos
(
k
θ
)
=
∑
k
=
1
n
(
sin
(
(
k
+
1
2
)
θ
)
−
sin
(
(
k
−
1
2
)
θ
)
)
=
∑
k
=
1
n
sin
(
(
k
+
1
2
)
θ
)
−
∑
k
=
0
n
−
1
sin
(
(
k
+
1
2
)
θ
)
=
sin
(
(
n
+
1
2
)
θ
)
−
sin
(
θ
2
)
∑
k
=
1
n
cos
(
k
θ
)
=
sin
(
θ
2
+
n
θ
)
−
sin
(
θ
2
)
2
sin
(
θ
2
)
\begin{aligned} 2\sin\big(\frac{\theta}{2}\big)\sum_{k=1}^n\cos(k\theta)&=\sum_{k=1}^n2\sin(\frac{\theta}{2})\cos(k\theta)\\&=\sum_{k=1}^n\Big(\sin\big((k+\frac{1}{2})\theta\big)-\sin\big((k-\frac{1}{2})\theta\big)\Big)\\&=\sum_{k=1}^n\sin\big((k+\frac{1}{2})\theta\big)-\sum_{k=0}^{n-1}\sin\big((k+\frac{1}{2})\theta\big)\\&=\sin\big((n+\frac{1}{2})\theta\big)-\sin\big(\frac{\theta}{2}\big)\\ \sum_{k=1}^n\cos(k\theta)&=\frac{\displaystyle\sin\big(\frac{\theta}{2}+n\theta\big)-\sin\big(\frac{\theta}{2}\big)}{\displaystyle2\sin\big(\frac{\theta}{2}\big)} \end{aligned}
2sin(2θ)k=1∑ncos(kθ)k=1∑ncos(kθ)=k=1∑n2sin(2θ)cos(kθ)=k=1∑n(sin((k+21)θ)−sin((k−21)θ))=k=1∑nsin((k+21)θ)−k=0∑n−1sin((k+21)θ)=sin((n+21)θ)−sin(2θ)=2sin(2θ)sin(2θ+nθ)−sin(2θ)取
θ
=
2
π
/
n
\theta=2\pi/n
θ=2π/n,则
cos
(
θ
2
)
−
cos
(
1
2
θ
+
n
θ
)
=
cos
(
θ
2
)
−
cos
(
1
2
θ
+
2
π
)
=
0
\cos\big(\frac{\theta}{2}\big)-\cos\big(\frac{1}{2}\theta+n\theta\big)=\cos\big(\frac{\theta}{2}\big)-\cos\big(\frac{1}{2}\theta+2\pi\big)=0
cos(2θ)−cos(21θ+nθ)=cos(2θ)−cos(21θ+2π)=0
sin
(
1
2
θ
+
n
θ
)
−
sin
(
θ
2
)
=
sin
(
1
2
θ
+
2
π
)
−
sin
(
θ
2
)
=
0
\sin\big(\frac{1}{2}\theta+n\theta\big)-\sin\big(\frac{\theta}{2}\big)=\sin\big(\frac{1}{2}\theta+2\pi\big)-\sin\big(\frac{\theta}{2}\big)=0
sin(21θ+nθ)−sin(2θ)=sin(21θ+2π)−sin(2θ)=0所以
∑
k
=
1
n
sin
(
2
k
π
n
)
=
0
∑
k
=
1
n
cos
(
2
k
π
n
)
=
0
\sum_{k=1}^n\sin\big(\frac{2k\pi}{n}\big)=0\\ \sum_{k=1}^n\cos\big(\frac{2k\pi}{n}\big)=0
k=1∑nsin(n2kπ)=0k=1∑ncos(n2kπ)=0
∑
k
=
1
n
(
cos
2
k
π
n
,
sin
2
k
π
n
)
=
(
0
,
0
)
\sum_{k=1}^n(\cos\frac{2k\pi}{n},\sin\frac{2k\pi}{n})=(0,0)
k=1∑n(cosn2kπ,sinn2kπ)=(0,0)