Numpy的广播与科学计算

一、广播计算规则

Numpy所具备的广播特性,可以使得数组的科学计算变得高效而便捷,是NumPy最核大的特色之一。
例如:两个三个元素的数组,在进行减法运算时,每个位置上的元素依次相减。
在这里插入图片描述
当然,目前也有很多材料认为,只有不同形状的数组在进行计算时,才用到了广播特性。
对于如下的广播示意图:
在这里插入图片描述
①相当于每个元素都依次+5
在这里插入图片描述
②相当于a的每一行都加b,也可以理解为将b纵向扩展为了一个3*3的数组,和a对应相加。
在这里插入图片描述
③相当于对a进行了横向扩展,对b进行了纵向扩展,然后对应元素相加。
在这里插入图片描述
值得注意的是,如果两个数组的形状在任何一个维度上都不匹配并且没有任何一个维度为1,则会引发异常无法广播。

二、数组的算数运算

在这里插入图片描述
在这里插入图片描述

三、数组的统计函数

在这里插入图片描述

四、数组的线性代数函数

NumPy拥有numpy.linalg 模块,提供线性代数所需的所有功能。

np.dot() 返回两个数组的点积
np.vdot() 返回两个向量的点积
np.inner() 返回一维数组的向量内积
np.matmul() 返回两个数组的矩阵乘积
np.linalg.det() 计算输入矩阵的行列式
np.linalg.solve() 求解矩阵形式的线性方程的解
np.linalg.inv() 计算矩阵的逆
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值