(tensorflow笔记)神经网络偏底层实现鸢尾花分类

1.准备数据

1.1数据集读入

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

1.2数据集乱序

随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率

# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

1.3生成训练集和测试集

将打乱后的数据集分割为训练集和测试集,然后转换x的数据类型,这里x_train里数据元素的数据类型为float64,而进行矩阵相乘时,x_train和x_test需要和权重矩阵相乘,权重矩阵的数据类型为tf.float32,因此这里需要转换数据类型

# 训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

1.4配对(输入特征和标签),每次读入一小撮(batch)

生成输入特征/标签对,构建数据集,这里每个batch取32,batch大小是一个超参数,最好取2的次方,方便计算机运算

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

2.搭建网络

定义神经网络中所有可训练参数

当w的个数和shape确定后,整个神经网络的结构也就确定了
这里仅设计一层神经网络。因为特征有4个,所以输入节点为4个,三分类,所以输出节点是3个。初始化权重矩阵的时候注意,w的shape为(4,3),即4行3列,行数为前一层神经元的个数,列数为后一层神经元的个数,输入节点为拉直一维行向量。吴恩达老师上课讲的正好相反,按吴恩达老师的做法,这里的w的shape应该为(3,4),输入节点拉直为一维列向量,两种方式都可以,做矩阵乘法时注意下即可
在这里插入图片描述

# 用tf.Variable()标记参数可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

3.参数优化

嵌套循环迭代,with结构更新参数,显示当前loss
定义几个后续需要用到的参数:

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每个epoch的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每个epoch的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

训练部分

for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)。这里求的是每个step的总平均误差
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确。上面的loss值是tensorflow格式的数据,需要转换成numpy()格式,即转换成单独的数值=
        grads = tape.gradient(loss, [w1, b1])	# 计算loss对各个参数的梯度

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

每个epoch,打印loss信息,同时记录每个epoch的loss值,为后续画loss曲线提供数据

	print("Epoch : {} , loss : {}".format(epoch , loss_all/4))
    train_loss_results.append(loss_all/4)
    loss_all = 0

4.测试效果

测试部分

测试部分,看一下迭代一次epoch的效果,用测试数据集跑一下模型,算一下准确率。计算当前参数前后传播后的准确率,显示当前acc

	total_correct , total_number = 0 , 0	#算准确率,即用预测正确的/预测的总数
    for x_test , y_test in test_db :
        y = tf.matmul(x_test , w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y , axis=1)    #tf.Tensor([1 0 1 1 1 2 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 2 2 0 2 0 0 2 1], shape=(30,), dtype=int64)	这里的dtype=int64
        pred = tf.cast(pred , dtype=y_test.dtype)#tf.Tensor([1 0 1 1 1 2 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 2 2 0 2 0 0 2 1], shape=(30,), dtype=int32)	#为了后续的判断预测的结果是否与标签值一致,需要将预测结果的数据类型转换为标签的数据类型
        correct = tf.cast(tf.equal(pred , y_test) , dtype=tf.int32)#tf.Tensor([1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0], shape=(30,), dtype=int32),为1的表示预测正确,将bool型的结果转换为int型,即可得到预测正确数
        correct = tf.reduce_sum(correct)    #因为预测错误的为0,加起来也不影响结果 tf.Tensor(26, shape=(), dtype=int32)
        total_correct += int(correct)
        total_number += x_test.shape[0]

    acc = total_correct/total_number	#算准确率,即用预测正确的/预测的总数
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

5.acc/loss可视化

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

6.完整代码

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值