[CSP-J 2023] 公路
题目描述
小苞准备开着车沿着公路自驾。
公路上一共有 n n n 个站点,编号为从 1 1 1 到 n n n。其中站点 i i i 与站点 i + 1 i + 1 i+1 的距离为 v i v_i vi 公里。
公路上每个站点都可以加油,编号为 i i i 的站点一升油的价格为 a i a_i ai 元,且每个站点只出售整数升的油。
小苞想从站点 1 1 1 开车到站点 n n n,一开始小苞在站点 1 1 1 且车的油箱是空的。已知车的油箱足够大,可以装下任意多的油,且每升油可以让车前进 d d d 公里。问小苞从站点 1 1 1 开到站点 n n n,至少要花多少钱加油?
输入格式
输入的第一行包含两个正整数 n n n 和 d d d,分别表示公路上站点的数量和车每升油可以前进的距离。
输入的第二行包含 n − 1 n - 1 n−1 个正整数 v 1 , v 2 … v n − 1 v_1, v_2\dots v_{n-1} v1,v2…vn−1,分别表示站点间的距离。
输入的第三行包含 n n n 个正整数 a 1 , a 2 … a n a_1, a_2 \dots a_n a1,a2…an,分别表示在不同站点加油的价格。
输出格式
输出一行,仅包含一个正整数,表示从站点 1 1 1 开到站点 n n n,小苞至少要花多少钱加油。
样例 #1
样例输入 #1
5 4
10 10 10 10
9 8 9 6 5
样例输出 #1
79
提示
【样例 1 解释】
最优方案下:小苞在站点 1 1 1 买了 3 3 3 升油,在站点 2 2 2 购买了 5 5 5 升油,在站点 4 4 4 购买了 2 2 2 升油。
【样例 2】
见选手目录下的 road/road2.in 与 road/road2.ans。
【数据范围】
对于所有测试数据保证: 1 ≤ n ≤ 1 0 5 1 \leq n \leq 10^5 1≤n≤105, 1 ≤ d ≤ 1 0 5 1 \leq d \leq 10^5 1≤d≤105, 1 ≤ v i ≤ 1 0 5 1 \leq v_i \leq 10^5 1≤vi≤105, 1 ≤ a i ≤ 1 0 5 1 \leq a_i \leq 10^5 1≤ai≤105。
测试点 | n ≤ n \leq n≤ | 特殊性质 |
---|---|---|
1 ∼ 5 1\sim 5 1∼5 | 8 8 8 | 无 |
6 ∼ 10 6\sim 10 6∼10 | 1 0 3 10^3 103 | 无 |
11 ∼ 13 11\sim 13 11∼13 | 1 0 5 10^5 105 | A |
14 ∼ 16 14\sim 16 14∼16 | 1 0 5 10^5 105 | B |
17 ∼ 20 17\sim 20 17∼20 | 1 0 5 10^5 105 | 无 |
- 特殊性质 A:站点 1 1 1 的油价最低。
- 特殊性质 B:对于所有 1 ≤ i < n 1 \leq i < n 1≤i<n, v i v_i vi 为 d d d 的倍数。
题意
每一站均有加油站,用最少的钱买油达到终点站
思路
-
车的油箱大小无限制,因此可以在价格最低的地方多加油,但是因为必须满足油箱的油够跑到下一站
-
所以只需要判断剩余油量是否能跑到下一站,遍历n-1个站点,每次用价格最低的油价加油即可(表示在前面站点就把需要的油加了)
-
把油量转化成能跑的里程数,便于计算
知识点
思维
数据约束
数据都在10^5以内,但是油量和价格都需要开大些,Long long足够
代码参考
#include<bits/stdc++.h>
#define N 100005
using namespace std;
int a[N],v[N],f[N];
long long sy=0;//储存车油所能跑的里程
int main(){
int n,d;
long long num=0;//距离、油价
cin>>n>>d;
for(int i=1;i<n;i++){
cin>>v[i];//v储存站点距离
f[i] = 1;
}
for(int i=1;i<=n;i++){
cin>>a[i];//a储存油价
}
int m = 1e6,t=0;
for(int i=1;i<n;i++){
//判断油量、价格选择最便宜的
sy -= v[i-1];
if(sy<v[i]){
t=(v[i]-sy)/d;
if((v[i]-sy)%d!=0) {//不是整数倍油量+1
t++;
}
m = min(m,a[i]);
sy += d*t;
num += m*t;
}
}
cout<<num;
return 0;
}