Kruskal算法

最小生成树问题:

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 [1]  最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。prim是对点贪心,适用于稠密图;kruskal对边进行贪心,代码更简单更高效,但是处理边较多的图复杂度要差一些,所以适用于稀疏图。

Kruskal算法

对边进行贪心操作。从最短的边开始,把他们加入到T中;在剩下的边中找到最短的边,加入到T中;继续这个过程,直到所有的点都在T中。

(1)对边进行排序。可以用STL的sort()函数,排序后,依次把最短的边加入到T中。

(2)判断圈,即处理连通性问题——并查集。

//sort函数要用到的比较函数
bool cmp(edge a, edge b){	return a.w < b.w;}


//并查集
int fa[num];//父节点 
int find(int x){	return fa[x]==x? x: fa[x] = find(fa[x]);}

图解之后有条件再补充,先贴上我的模板(选用的是HDU1233这道题)。

#include<iostream>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
const int num = 1001;

int n, m;
int fa[num];//父节点 
struct edge{int u, v, w;}e[num*num];
bool cmp(edge a, edge b){	return a.w < b.w;}
int find(int x){	return fa[x]==x? x: fa[x] = find(fa[x]);}

int kruskal(){
	int ans = 0;
	for(int i=1; i<=n; i++)	fa[i] = i;
	sort(e+1, e+m+1, cmp);
	
	for(int i=1; i<=m; i++){
		int a=find(e[i].u), b=find(e[i].v);
		if(a==b)	continue;//产生了圈,丢弃这个边 
		fa[b] = a;//合并 
		ans += e[i].w;
	}
	return ans;
}

int main(){
	while(~scanf("%d", &n) && n){
		m = n*(n-1)/2;
		for(int i=1; i<=m; i++)
			scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);//存图 
		printf("%d\n", kruskal());
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值