最小生成树问题:
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 [1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。prim是对点贪心,适用于稠密图;kruskal对边进行贪心,代码更简单更高效,但是处理边较多的图复杂度要差一些,所以适用于稀疏图。
Kruskal算法
对边进行贪心操作。从最短的边开始,把他们加入到T中;在剩下的边中找到最短的边,加入到T中;继续这个过程,直到所有的点都在T中。
(1)对边进行排序。可以用STL的sort()函数,排序后,依次把最短的边加入到T中。
(2)判断圈,即处理连通性问题——并查集。
//sort函数要用到的比较函数
bool cmp(edge a, edge b){ return a.w < b.w;}
//并查集
int fa[num];//父节点
int find(int x){ return fa[x]==x? x: fa[x] = find(fa[x]);}
图解之后有条件再补充,先贴上我的模板(选用的是HDU1233这道题)。
#include<iostream>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
const int num = 1001;
int n, m;
int fa[num];//父节点
struct edge{int u, v, w;}e[num*num];
bool cmp(edge a, edge b){ return a.w < b.w;}
int find(int x){ return fa[x]==x? x: fa[x] = find(fa[x]);}
int kruskal(){
int ans = 0;
for(int i=1; i<=n; i++) fa[i] = i;
sort(e+1, e+m+1, cmp);
for(int i=1; i<=m; i++){
int a=find(e[i].u), b=find(e[i].v);
if(a==b) continue;//产生了圈,丢弃这个边
fa[b] = a;//合并
ans += e[i].w;
}
return ans;
}
int main(){
while(~scanf("%d", &n) && n){
m = n*(n-1)/2;
for(int i=1; i<=m; i++)
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);//存图
printf("%d\n", kruskal());
}
return 0;
}