2016 ACM-ICPC CHINA-Final shanghai

2016-2017 ACM-ICPC CHINA-Final

题目ABCDEFGHIJKL
solved--🚫🚫------

✔:比赛时通过;🚫:赛后通过;⚪:比赛时尝试了未通过;-:比赛时未尝试

REPLY

lllllan:

  • 开什么题什么题不会,感觉需要停下来好好学一下了。

Sstee1XD:

  • 这场好自闭,一直让队友开新题把队友心态搞炸了,对不起。

A - Number Theory Problem【签到】

solved by Tryna. 0:05(+)

题意: 给出一个N,计算小于 2 N 2^N 2N 的正整数中有多少个 2 k − 1 2^k - 1 2k1能够被7整除

题解: 因为 2 3 − 1 2^3 - 1 231 是 7, 所以当k为3的倍数时, 2 k − 1 2^k - 1 2k1能被7整除,所以 N / 3 N / 3 N/3就是答案了。

#include<bits/stdc++.h>
using namespace std;
int t, n; 
int main () {
	scanf("%d", &t);
	for(int k = 1; k <= t; k++){
		scanf("%d", &n);
		printf("Case #%d: %d\n", k, n / 3);
	}
    return 0;
}

D - Ice Cream Tower

Solved by Sstee1XD. (-)

题意: 给你 N N N个冰激凌球的大小,问最多能叠几个拥有 k k k个冰激凌球,下一层比上一层大一倍及以上的冰激凌。

题解: 没有比较好的贪心策略,我们考虑二分答案,发现验证答案的正确性的贪心策略是比较明显的。

#include<bits/stdc++.h>
using namespace std;

#define sit multiset<ll>::iterator
#define endl "\n"
#define dbg(x...) do { cout << #x << " -> "; err(x); } while (0)
void err () {	cout << endl;}
template <class T, class... Ts>
void err(const T& arg, const Ts&... args) {
cout << arg << ' '; err(args...);}

typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 3e5 + 7;
int n, k, cas;
ll a[maxn], b[maxn];
void run () {
    int ans = 0;
	scanf("%d %d", &n, &k);
    for (int i = 1; i <= n; ++i) scanf("%lld", &a[i]);
    sort(a + 1, a + 1 + n);
    int l = 1, r = n / k, mid;
    while (l <= r) {
        mid = l + r >> 1;
        int now = 1, cnt = 0;
        for (int i = 1; i <= mid; ++i) b[i] = 0;
        for (int i = 1; i <= n; ++i) {
            if (b[now] * 2 <= a[i]) {
                b[now++] = a[i];
            }
            if (now > mid) now = 1, cnt++;
            if (cnt == k) break;
        }
        if (cnt ^ k) r = mid - 1;
        else l = mid + 1, ans = mid;
    }
	printf("Case #%d: ", ++cas);
	printf("%d\n", ans);
}

int main () {
	int _T;
	scanf("%d", &_T);
	while (_T--) run();
    return 0;
}

E - Bet

Solved by Sstee1XD. (-)

题意: 给你 N N N支队伍的赔率,问你最多能买几支队伍,使得你买的队伍中
任意一支队伍取胜,你皆能获利。

题解: 我们假设本金为 1 1 1,对第i只球队下注金额为 p i p_i pi,它的赔率是 b i a i \frac{b_i}{a_i} aibi,获利的条件是 p i + p i ∗ b i a i > 1 p_i + p_i * \frac{b_i}{a_i} > 1 pi+piaibi>1,即 p i > a i + b i a i p_i > \frac{a_i + b_i}{a_i} pi>aiai+bi。我们算出后面的结果后从小到大排序,然后一直加到 ≥ 1 \geq 1 1就好了。C++11会有精度问题。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
#define double long double
#define dbg(x...) do { cout << #x << " -> "; err(x); } while (0)
void err() { cout << endl; }
template <class T, class... Ts>
void err(const T& arg, const Ts&... args) {
    cout << arg << ' '; err(args...);
}
ll gcd(ll a, ll b) {
    return a == 0? b : gcd(b % a, a);
}
const int maxn = 1e2 + 7;
int n;
double a[maxn], b[maxn], c[maxn];
double t, tt;
ll d, di;
int cas;
void solve() {
    scanf("%d", &n);
    d = 1;
    for (int i = 1; i <= n; ++i) {
        scanf("%Lf:%Lf", &t, &tt);
        a[i] = t;
        b[i] = tt;
        c[i] = a[i] / (a[i] + b[i]);
    }
    sort(c + 1, c + 1 + n);
    double now = 0;
    printf("Case #%d: ", ++cas);
    for (int i = 1; i <= n; ++i) {
        now += c[i];
        if (now >= 1) {
            printf("%d\n", i - 1);
            return;
        }
        if (i == n) printf("%d\n", n);
    }
}

int main() {
    int _T;
    scanf("%d", &_T);
    while(_T--) solve();
}

H - Great Cells

solved by Tryna. (-)

题意: 一个矩阵中的一个格子如果满足它严格大于它所在的行和列,那么我们称这个格子为great cell A g A_{g} Ag代表有g个 great cell 时的方案数。给出一个n行m列的矩阵和一个数k,k表示每个格子可以从 [ 1 , k ] \left [1 ,k\right ] [1,k]中选取一个数放进当前格子。要我们计算这个公式的结果 ∑ g = 0 N M ( g + 1 ) ⋅ A g m o d ( 1 0 9 + 7 ) \sum_{g=0}^{NM} (g + 1) · A_g mod (10^9 + 7) g=0NM(g+1)Agmod(109+7)

题解: 刚开始被这个公式陷进去了,一直在想 A g A_g Ag如何计数,后来发现完全数不过来,赛后看了dalao的博客,才发现一开始就像错了,我的思维太局限了。上面那个公式可以拆分成 ∑ g = 0 N M g ⋅ A g m o d ( 1 0 9 + 7 ) + ∑ g = 0 N M A g m o d ( 1 0 9 + 10 ) \sum_{g=0}^{NM} g · A_g mod (10^9 + 7) + \sum_{g=0}^{NM} A_g mod(10^9 + 10) g=0NMgAgmod(109+7)+g=0NMAgmod(109+10)
后面那个公式代表所有的 A g A_g Ag矩阵数量,其实也就是所有矩阵的数量,所以后面那个公式就是 K N M K^{NM} KNM
对于前面的公式, A g A_{g} Ag代表有g个 great cell 时的方案数,g代表当前的 great cell 的个数, 所以对于当前这种方案 A g A_g Ag,我如果给它乘上一个g,那么代表每个 great cell 都分到了1,也就是当前这种方案下的g个格子对答案的贡献都为1。所以 ∑ g = 0 N M g ⋅ A g m o d ( 1 0 9 + 7 ) \sum_{g=0}^{NM} g · A_g mod (10^9 + 7) g=0NMgAgmod(109+7)对于这个公式就是所有格子作为great cell的情况总和。
所以可以转化一下求法,从矩阵中选取一个格子,计算这个格子作为great cell的总数,只需要保证这行这列严格小于当前格子就行,所有受限制的格子有 N − 1 + M − 1 N - 1 + M - 1 N1+M1个,其余的 ( N − 1 ) ∗ ( M − 1 ) (N-1)*(M-1) (N1)(M1)个格子是不受限制的,所以我们就能把题目给的公式化简为下列公式 N M ∑ i = 1 K ( i − 1 ) N + M − 2 ∗ K ( N − 1 ) ∗ ( M − 1 ) + K N M NM\sum_{i = 1}^{K} (i - 1)^{N + M - 2} * K^{(N - 1) * (M - 1)} + K^{NM} NMi=1K(i1)N+M2K(N1)(M1)+KNM

#include<bits/stdc++.h>
using namespace std;    
#define ll long long
const int maxn = 110;
const int mod = 1e9 + 7;
int quick_power(ll n, ll k){
	int ans=1;
	while(k){
		if(k&1){
			ans=(ans*n)%mod;
		}
		n=n*n%mod;
		k>>=1;
	}
	return ans%mod;
}
int t;
ll n, m, k;
int main() {
	scanf("%d", &t);
    for(int case1 = 1; case1 <= t; case1++){
        scanf("%lld %lld %lld", &n, &m, &k);
        if(n == 1 && m == 1){
            printf("Case #%d: %lld\n", case1, k);
            continue;
        }
        ll ans = quick_power(k, n * m);
        ll cnt = 0;
        for(int i = 1; i <= k; i++){
            cnt = (cnt + quick_power(i - 1, n + m - 2)) % mod;
        }
        cnt = cnt * n % mod * m % mod * quick_power(k, (n - 1) * (m - 1)) % mod;
        ans = (ans + cnt) % mod;
 
        printf("Case #%d: %lld\n", case1, ans);
    }
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值