数据仓库理论

关系建模和维度建模是两种数据仓库的建模技术,在此重点介绍维度建模。

关系建模

关系模型严格遵循第三范式(3NF),数据冗余程度低,数据的一致性容易得到保证。由于数据分布于众多的表中,查询会相对复杂,在大数据的场景下,查询效率相对较低。
范式理论大家数据库课都讲过不过多赘述。

维度建模

维度建模划分为事实表、维度表两种类型。

事实表:

订单id用户id下单时间打包时间发货时间签收时间订单金额
3-83-83-93-10

事实表中的每行数据代表一个业务事件(下单、支付、退款、评价等)。“事实”这个术语表示的是业务事件的度量值(可统计次数、个数、金额等),例如,2020年5月21日,宋老师在京东花了250块钱买了一瓶药。维度表:时间、用户、商品、商家。事实表:250块钱、一瓶

事实表还可以被分为三种

(1)事务型事实表

以每个事务或事件为单位,例如一个销售订单记录,一笔支付记录等,作为事实表里的一行数据。一旦事务被提交,事实表数据被插入,数据就不再进行更改,其更新方式为增量更新。

(2)周期型快照事实表

周期型快照事实表中不会保留所有数据,只保留固定时间间隔的数据,以具有规律性的、可预见的时间间隔记录事实。例如每天或每月的总销售金额,或每月的账户余额等。

(3)累积型快照事实表

累积快照事实表用于跟踪业务事实的变化,覆盖过程的整个生命周期,通常具有多个日期字段来记录关键时间点。例如数据仓库中可能需要累积或者存储订单从下单开始,到订单商品被打包、运输、签收等各个业务阶段的时间点数据,来跟踪订单生命周期的进展情况。当这个业务过程进行时,事实表的记录也要不断更新。

维度表:

如时间维度表

日期 IDday of weekday of year季度节假日
2020-01-01211元旦

此类的对事实的描述信息的表即维度表。每一张维表对应现实世界中的一个对象或者概念。 例如:用户、商品、日期、地区等。

维度,顾名思义,看待事物的角度。比如从颜色、尺寸的角度来比较手机的外观,从cpu、内存等角度比较手机性能。

维度表一般为单一主键,在ER模型中,实体为客观存在的事务,会带有自己的描述性属性,属性一般为文本性、描述性的,这些描述被称为维度。

比如商品,单一主键:商品ID,属性包括产地、颜色、材质、尺寸、单价等,但并非属性一定是文本,比如单价、尺寸,均为数值型描述性的,日常主要的维度抽象包括:时间维度表、地理区域维度表等。

维度建模通常又分为星型模型、雪花模型、星座模型。

星型模型:
在这里插入图片描述

雪花模型:
在这里插入图片描述
星座模型:

在这里插入图片描述

星型模型和雪花模型的主要区别在于对维度表的拆分,对于雪花模型,维度表的设计更加规范,一般符合3NF;而星型模型,一般采用降维的操作,利用冗余来避免模型过于复杂,提高易用性和分析效率。

雪花、星型模型对比:

1、冗余:雪花模型符合业务逻辑设计,采用3NF设计,有效降低数据冗余;星型模型的维度表设计不符合3NF,反规范化,维度表之间不会直接相关,牺牲部分存储空间。

2、性能:雪花模型由于存在维度间的关联,采用3NF降低冗余,通常在使用过程中,需要连接更多的维度表,导致性能偏低;星型模型反三范式,采用降维的操作将维度整合,以存储空间为代价有效降低维度表连接数,性能较雪花模型高。

3、ETL:雪花模型符合业务ER模型设计原则,在ETL过程中相对简单,但是由于附属模型的限制,ETL任务并行化较低;星型模型在设计维度表时反范式设计,所以在ETL过程中整合业务数据到维度表有一定难度,但由于避免附属维度,可并行化处理。

大数据和传统关系型数据库的计算框架不一样,例如对比mapreduce和oracle,在mapreduce里面,每多一个表的关联,就多一个job。mapreduce的每个任务进来,要申请资源,分配容器,各节点通信等。有可能YARN调度时长大于任务运行时间,例如调度需要5秒才能申请到资源,而表之间的join只需要2秒。hive优化里面,要尽可能减少job任务数,也就是减少表之间的关联,可以用适当的冗余来避免低效的查询方式,这是和oracle等其他关系型数据库不同的地方。

数仓分层

数仓分层意义

1.减少重复开发和资源浪费

规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算
清晰明了的结构使得开发、维护的成本降低
减少重复计算和存储的资源浪费

2.复杂问题简单化

将一个复杂的任务分解成多个步骤来完成,每一层只处理单一的步骤,比较简单和容易理解。而且便于维护数据的准确性,当数据出现问题之后,可以不用修复所有的数据,只需要从有问题的步骤开始修复。

3.统一数据口径

过数据分层提供统一的数据出口,统一对外输出的数据口径,这往往就是我们说的数据应用层
在这里插入图片描述

ODS操作数据层

(1)保持数据原貌不做任何修改,起到备份数据的作用。
(2)数据采用压缩,减少磁盘存储空间(例如:原始数据100G,可以压缩到10G左右)
(3)创建分区表,防止后续的全表扫描

DW层

dw层细分为dwd层、dws层和dwt层。

DWD层和DIM层

DWD层要做的就是将数据清理、整合、规范化、脏数据、垃圾数据、规范不一致的、状态定义不一致的、命名不规范的数据都会被处理。然后加工成面向数仓的基础明细表,这个时候可以加工一些面向分析的大宽表
DWD层和DIM层需构建维度模型,一般采用星型模型,呈现的状态一般为星座模型。
维度建模一般按照以下四个步骤:
选择业务过程→声明粒度→确认维度→确认事实
(1)选择业务过程
在业务系统中,如果业务表过多,挑选我们感兴趣的业务线,比如下单业务,支付业务,退款业务,物流业务,一条业务线对应一张事实表。如果小公司业务表比较少,建议选择所有业务线。
(2)声明粒度
数据粒度指数据仓库的数据中保存数据的细化程度或综合程度的级别。
声明粒度意味着精确定义事实表中的一行数据表示什么,应该尽可能选择最小粒度,以此来应各种各样的需求。
典型的粒度声明如下:
订单当中的每个商品项作为下单事实表中的一行,粒度为每次
每周的订单次数作为一行,粒度为每周。
每月的订单次数作为一行,粒度为每月。
如果在DWD层粒度就是每周或者每月,那么后续就没有办法统计细粒度的指标了。所有建议采用最小粒度。
(3)确定维度
维度的主要作用是描述业务是事实,主要表示的是“谁,何处,何时”等信息。例如:时间维度、用户维度、地区维度等常见维度。
(4)确定事实
此处的“事实”一词,指的是业务中的度量值,例如订单金额、下单次数等。
在DWD层,以业务过程为建模驱动,基于每个具体业务过程的特点,构建最细粒度的明细层事实表。事实表可做适当的宽表化处理。

DWS层

DWS层统计各个主题对象的当天行为,服务于DWT层的主题宽表。如图所示,DWS层的宽表字段,是站在不同维度的视角去看事实表,重点关注事实表的度量值,通过与之关联的事实表,获得不同的事实表的度量值。

DWT层

以分析的主题对象为建模驱动,基于上层的应用和产品的指标需求,构建主题对象的全量宽表。(如dws层以天统计,dwt层则以7天、30天统计)

ADS层

分别对设备主题、会员主题、商品主题和营销主题进行指标分析,其中营销主题是用户主题和商品主题的跨主题分析案例

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值